1) increasing (decreasing) operator
增算子与减算子
2) strongly increasing(decreasing) operator
强增(减)算子
1.
In this paper, we give the concept of multi valued strongly increasing(decreasing) operator in Banach spaces, and obtain some properties.
在由锥导出的半序Banach空间框架下,研究集值强增(减)算子的若干性质,所得结果是文[1,2]中相应结果的推
3) Increase&d ecrease mutation operator
增减变异算子
4) T-increasing (T-decreasing) mapping
T-增(T-减)算子
5) decreasing operator
减算子
1.
Fixed point theorens of some decreasing operator and their application;
一类减算子的不动点定理及其应用
2.
The existence uniqueness of solutions of noncompact decreasing operator equations and its application;
一类非紧减算子方程解的存在唯一性及其应用
3.
New fixed-point theorens of some decreasing operator;
一类减算子方程新的不动点定理
6) decreasing operators
减算子
1.
The fixed point of decreasing operators in Banach space;
Banach空间中减算子的不动点
2.
Fixed point theorems for order-compression decreasing operators
基于序压缩条件下的减算子不动点理论
3.
In this paper,the existence,uniqueness and iteration of fixed points for some decreasing operators are studied by the theory of cone and monotone iterative techniques,and several results are applied to Hammerstein nonlinear integral equations on R~N.
运用锥理论知识和单调迭代技巧研究了一类减算子的不动点的存在、唯一及迭代收敛性,获得了新的结果,并将所得结果应用于RN上的Hammerstein非线性积分方程之中。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条