1) p-(S) quasi normal subgroup
p-(S-)拟正规子群
2) p-quasi-normal subgroup
p-拟正规子群
1.
This paper introduces the concept of p-quasl-normal subgroup,and investigates how the structure of a group Gis influenced by the p-quasi-normal subgroups of G.
本文引进了 p-拟正规子群的概念,讨论了 p-拟正规子群对群结构的影响,主要结果有:(1) G 的极大子群均 p-拟正规■Gp-闭;(2) G 的2-极大子群均 p-拟正规■Gp-闭或 G 为有指数为 p 的循环正规子群的 p~αq 阶亚循环群,p~α|q-1;(3) 若 G 有一循环极大子群 p-拟正规,则 G 超可解或 G 可解且 p-闭;(4) ■ p||G|,G 的 Sylow p-子群的所有极大子群均 p-拟正规,则 G=F_0又 F_1,其中 F_0为G 的幂零正规的 Hall 子群,F_1是 Sylow 子群全循环的群。
4) S-quasinormally embedded subgroup
S-拟正规嵌入子群
1.
It says that H is an S-quasinormal subgroup of G if HP=PH for any Sylow subgroup P of G;H is an S-quasinormally embedded subgroup of G if every Sylow subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G;H is a C*-normal subgroup of G if there exists a normal subgroup K of G such that G=HK and H∩K is S-quasinormally embedded in G.
称H是G的S-拟正规子群,如果对G的任意Sylow子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HK且满足H∩K在G中是S-拟正规嵌入的。
5) s-normal subgroups
s-正规子群
6) S-normal subgroup
S正规子群
补充资料:正规子群
正规子群
normal srihgroqi
正规子群f.川口日,鲍”,;”o州a刀研‘‘举月“犯月‘],正规除子(加m司divisor),不变子群(访珑币田吐sub-罗〕uP)群G的子群H,使得G模H的左分解与右分解相同.换言之,对于任意元素a6G,陪集aH和Ha(作为集合)相等.这时亦称H在G中正规,记作H且G:如果还有H笋G,则记作H阅G.子群H在G中正规当且仅当它包含其任意元素的所有G共辘(见共辘元(conju即把日翻笠nis)),即H“住H.正规子群还可以定义为与其所有的共扼都相等的子群,因而也被称为自共扼子群(货扩·。功火势忱subgro叩). 对于任意同态(hOIno加甲恤m)州G~G’,G中被映成G’的单位元的全体元素组成的集合K(即同态毋的核(kenle!of血加伽曲印比m))是G的一个正规子群.反之,G的任一正规子群都是某个同态的核.特别地,K是映到商群(q叩血ntgro叩)G/K的自然同态的核. 对于任意正规子群的集合,它们的交仍是正规的,由G的任意一族正规子群生成的子群仍在G中正规.0.A.物a,叱a撰【补注】群G的子群H是正规的,如果对所有的g‘G有g一’Hg=H,或者等价地,其正规化子N。(H)=G,见子集的正规化子(non工以止况r of a suh记t).正规子群亦称为不变子群(运论由以su地”叩),因为它在G的内自同构〔~auto伽rp比m)x巨尸=g一,xg(g‘G)下是不变的.在全体自同构下不变的子群称为全不变子群(蒯y一访招山ntsu地加uP),或者特征子群(d朋沈施加su琢ouP).在全体自同态下不变的子群称为全特征子群(刘y‘玩‘‘泊由tic su地阳叩).【译注】有的书将全体自同态下不变的子群称为〔完)全不变子群,而在全体自同构下不变的子群称为特征子群,如见[AI],[BI].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条