1) Ps-regular groups
P~s-正则群
2) Minimum Ps-irregular groups
极小非P~s-正则群
3) regular p-groups
正则p-群
1.
Using theory of finite regular p-groups and locally nilpotent groups, we get that if G is soluble and each proper infinite subgroupsis regular, and G is an extension of divisible abelian p-group of rank p-1 by a cyclic p-group.
利用有限正则p-群和局部幂零群的理论,得到:如果G是可解的非正则p-群,且G的每一个无限真子群是正则的,那么群G是秩为p-1的可除阿贝尔群被循环群的扩张。
4) P-regular semigroup
P-正则半群
1.
A characterization of characteristic kernel relation κ of P-regular semigroups;
P-正则半群上的特征核关系κ的刻画
2.
The minimum regular *-semigroup congruence on strongly P-regular semigroup
强P-正则半群上的最小正则*-半群同余
3.
Let S(P) be a strong P[WTBX]-semilattice of P-regular semigroups.
借助于“核-迹”方法刻画了P-正则半群的强P-半格上的强P-同余,给出了P-正则半群的强P-半格上的强P-同余对和由强P-同余对决定的强P-同余的结构;并证明了P-正则半群的强P-半格上的强P-同余可以由构成该强P-半格的P-正则半群族上的强P-同余诱导而得到。
5) irregular p group
非正则p-群
6) S-regular semigroup
S-正则半群
1.
In this paper,the S-regular semigroup is defined the necessity and sufficentconditions for a regular semigroup being S-regular are given, the properties of S-regularsemigroups are discussed and the fact that a strong semilattice of regular semigroups havingS-set is a strong S-semilattice of S-regular semigroups is proved.
本文定义了S-正则半群,给出了一个正则半群是S-正则半群的充要条件,讨论了S-正则半群的性质,证明了有S-集的正则半群强半格是S-正则半群的强S-半格。
补充资料:完全正则半群
完全正则半群
completely - regular semi - group
完全正则半群【。扣lple城y一代gular semi一g娜p;.n,班业PeryJ.P一翻no几y印ynna」 同01场班d半群(Clifford sem卜grouP).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条