说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟c-正规子群
1)  quasi-c-normal subgroups
拟c-正规子群
2)  C-normal subgroup
C-正规子群
3)  c-normal subgroups
c-正规子群
1.
For example, it is useful to do research about the structure of a group through the use of the properties of c-normal subgroups、weakly c-normal subgroups and weakly quasi-normal.
在第3章中,讨论了c-正规、弱c-正规子群的性质,并利用其性质给出一个群为超可解群、可解群、亚幂零群的一些条件。
4)  c~*-normal subgroup
c~*-正规子群
1.
The purpose of this paper is to study the influence of c~*-normal subgroups and H-subgroups on the structure of finite groups such as solvability, p-supersolvability, p-nilpotency.
本文的主要目的是研究c~*-正规子群和H-子群对有限群结构(如,可解性,p-超可解性,p-幂零性)的影响。
5)  C*-normal subgroup
C*-正规子群
1.
It says that H is an S-quasinormal subgroup of G if HP=PH for any Sylow subgroup P of G;H is an S-quasinormally embedded subgroup of G if every Sylow subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G;H is a C*C*-normal subgroup of G if there exists a normal subgroup K of G such that G=HK and H∩K is S-quasinormally embedded in G.
称H是G的S-拟正规子群,如果对G的任意Sylow子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HK且满足H∩K在G中是S-拟正规嵌入的。
6)  quasinormal subgroup
拟正规子群
补充资料:正规子群


正规子群
normal srihgroqi

  正规子群f.川口日,鲍”,;”o州a刀研‘‘举月“犯月‘],正规除子(加m司divisor),不变子群(访珑币田吐sub-罗〕uP)群G的子群H,使得G模H的左分解与右分解相同.换言之,对于任意元素a6G,陪集aH和Ha(作为集合)相等.这时亦称H在G中正规,记作H且G:如果还有H笋G,则记作H阅G.子群H在G中正规当且仅当它包含其任意元素的所有G共辘(见共辘元(conju即把日翻笠nis)),即H“住H.正规子群还可以定义为与其所有的共扼都相等的子群,因而也被称为自共扼子群(货扩·。功火势忱subgro叩). 对于任意同态(hOIno加甲恤m)州G~G’,G中被映成G’的单位元的全体元素组成的集合K(即同态毋的核(kenle!of血加伽曲印比m))是G的一个正规子群.反之,G的任一正规子群都是某个同态的核.特别地,K是映到商群(q叩血ntgro叩)G/K的自然同态的核. 对于任意正规子群的集合,它们的交仍是正规的,由G的任意一族正规子群生成的子群仍在G中正规.0.A.物a,叱a撰【补注】群G的子群H是正规的,如果对所有的g‘G有g一’Hg=H,或者等价地,其正规化子N。(H)=G,见子集的正规化子(non工以止况r of a suh记t).正规子群亦称为不变子群(运论由以su地”叩),因为它在G的内自同构〔~auto伽rp比m)x巨尸=g一,xg(g‘G)下是不变的.在全体自同构下不变的子群称为全不变子群(蒯y一访招山ntsu地加uP),或者特征子群(d朋沈施加su琢ouP).在全体自同态下不变的子群称为全特征子群(刘y‘玩‘‘泊由tic su地阳叩).【译注】有的书将全体自同态下不变的子群称为〔完)全不变子群,而在全体自同构下不变的子群称为特征子群,如见[AI],[BI].
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条