说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正规子数
1)  the normal index
正规子数
1.
This article studies the effect the normal index of common subgroup has on the nature of its own group so as to obtain a series of solvable and super-unsolvable full-prerequisite conditions of finite group.
本文研究一般子群的正规子数对群本身性质的影响 ,由此得出一系列有限群可解和超可解的充分必要条件 。
2)  log-hyponormal operators
对数-亚正规算子
3)  factor of normal series
正规数列因子
4)  algebraically *-paranormal operator
代数*仿正规算子
1.
using spectral characteristic of algebraically *-paranormal operators,Weyl\'s theorem and hypercyclicity for algebraically *-paranormal operators were studied.
运用代数*仿正规算子的谱的特点,研究了代数*仿正规算子的Weyl定理以及超循环性。
5)  normalizer [英]['nɔ:məlaizə]  [美]['nɔrmḷ,aɪzɚ]
正规化子
1.
The discreteness of the normalizers of Kleinian groups;
Kleinian群正规化子的离散性(英文)
2.
The nilpotent length of finite groups with given indices of normalizers of pimary subgroups;
准素子群的正规化子具有给定指数的有限群的幂零长
3.
Normalizer of Kleinian Subgroup of PU(2,1) and Discreteness of M(?)bius Groups in High Dimensions;
PU(2,1)的Kleinian子群的正规化子及高维M(?)bius群的离散准则
6)  normal subgroup
正规子群
1.
Character of group which only have n nontrivial normal subgroups
仅含n个非平凡正规子群的群的特征
2.
By using algebra of fixed point class to determine the component factors and properties of normal subgroup H of the fundamental group of the covering space, the paper studies the relation of fixed point class with fixed point class H.
本文利用不动点类的代数化 ,决定复迭空间的基本群的正规子群H的构成因素及其性质 ,研究不动点类与H不动点类的关系。
3.
Based on the Rough theory, a rough subgroup with respect to a normal subgroup of a group is discussed, and some properties of the lower and the upper approximations in a group are studied.
基于粗糙集理论 ,对一个群的子集关于正规子群的粗糙近似子群作了探讨 ,并研究了一个群的上、下近似的性
补充资料:正规数


正规数
normal nunber

正规数[.川目..由份;妞opM~oe,c加] 具有下列性质的实数以O城:簇l):对每个自然数、,任意给定的由符号O,…,g一l组成的s数组占‘(咨、,…,氏)以渐近频率l/gs出现在由“的以g为底的无限小数表达式 以,戊_ 比=一一二.十…十‘二十… 99一得到的序列 “1,…,“。,…(l)之中. 详而言之,设g>1是自然数,并设(二,,…,,,)夕(匡:,…,断.),(:」,…,二,+:),…(2)是对应于(l)的£元数组的无穷序列.用N(”,司清幼毛(2)的最初n个数组中数组占=(占:,…,氏)出现的次数.如果对任何自然数s及任意给定的由符号0,…,g一1组成的s数组占有 俪N(。,占)_1 一。”一了’那么称数 戊,戊, “二‘=十‘干十… 99-是正规的(加切目). 当g=10时正规数的概念是E .BO政引进的(见〔l],【2],p.197).他称实数:是对于底g弱正规的(髓记y nom如),如果 恤.丝左生立2.二上 ”一‘”夕,其中N(碑,占)是占(0簇占城g一l)在序列嘶,仪之,…的最初n项中出现的次数;称“是正规的,如果“,g“,扩“,…是对于底g,扩,…弱正规的,他还证明了对于正规数,对任何s及任何给定的s数组占=(占,,…,氏)有 ,漏.丝业丛互上二止 ”’。n口-后来人们证明了上面最后一个关系式等价于BO威的正规数定义(见[3」,[4]及[81). 如果数“对于每个底g>0都是正规的,那么称它是绝对正规的(a比。」u匕ly nom司).正规数和绝对正规数的存在性是Borel基于测度论建立的.用明显的形式构造正规数是在fs」中首先做到的.更早些(见1 61,汇7〕),正规数的一个有效构造过程被指出.关于其他构造正规数的方法及正规数与随机性两概念间的联系,可见【8]. 分数部分序列笼:gx}(x二l,2,…)在区间[0,l]上一致分布(切币化rm曲tu’buti0n)等价于:是正规数.【补注】几乎所有的数对于每个底g都是正规数(例如,见【AI]的定理8一11).但还不知道一些熟悉的数如在,。,二是否是正规数.正规数对于随机数的生成有重大意义.对于底g的正规数一定是无理数.而对于底ro的弱正规数 0 .012345678兑123456789.二自然是有理数.在x=o.a,a:…中,令a‘用i在10进制下的表达式的数字组来代替,这样得到的数 x=0 .1234567891011121314…是对于底10的正规数(【51).用同样的方法可得到对于任何给定的底的正规数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条