1) three-variable linear equation
三元一次方程
1.
By improving Ai s hypothesis this paper brought in three-variable linear equation and put forth the hypothesis of .
该文通过引入三元一次方程机制,改进了"双参数假说",尝试提出了"等级参数假说"。
2) univariate cubic equation
一元三次方程
1.
Based on the solution to univariate cubic equation,this paper puts forward a rigorous coordinate conversion method from geocentric system to geodetic system.
基于一元三次方程的求解,给出了地心坐标向大地坐标转换的严密计算公式,并用算例说明了其正确性。
2.
Based on the solution to univariate cubic equation,this paper puts forward a rigorous coordinate conversion method from Cartesian system to geodetic system.
基于一元三次方程的求解,给出了空间直角坐标向大地坐标直接转换的严密计算公式,并用算例说明了其正确性。
3) simple cubic equation
一元三次方程
1.
This paper introduces the method from generality to standardization of the simple cubic equation,and shows the illustrated distribution of standardized real root,solving the distribution problem of optional simple cubic equation s real root.
本文介绍了一元三次方程一般式化为标准式的方法,并结合图形给出了标准式的实数根的分布情况,从而解决了任意一元三次方程的实数根的分布的问题。
2.
The method that simple cubic equation was changed from general to standard was introduced and the distribution of standardized real root was illustrated, which solved the problem of the distribution of any real root for simple cubic equation.
介绍了一元三次方程一般式化为标准式的方法,结合图形给出了标准式的实数根的分布情况,从而解决了任意一元三次方程的实数根的分布的问题。
4) An Approxim ate Rootofa Unary Cubic Equation
一元三次方程的近似根
6) quartic equation
一元四次方程
1.
In the light of solution of predicted fire point of antiaircraft gun,on the basis of graphic method,by use of sulving the equation,the paper put forward solutions on precision higher:"adjust-coefficient method","graphic approach mehtod" and "quartic equation method".
针对高炮射击解提前点方法进行的研究,在图解法的基础上,运用解方程的思想,提出了精度更高的“系数调整法”、“图解逼近法”和“一元四次方程法”。
2.
In this paper, we discuss when a quartic equation has no real roots, and obtain a necessary and sufficient condition on a quartic equation which has no real roots.
本文讨论了一元四次方程无实根的一些充分、必要条件,并得到了一元四次方程无实根的一个充要条件。
3.
Two algorithms on solving quartic equation are introduced,and their accuracies and stabilities in numerical computation are analyzed in this paper.
介绍了一元四次方程的2种根式算法,并分析了2种根式算法解的精度。
补充资料:二元一次方程
有两种不同字母构成的方程,一般有两条二元一次方程才能解出未知数的解,也就是二元一次方程组.二元一次方程组有代入消元法,加减消元法.
例:
1)x-y=3
2)3x-8y=14
3)x=y+3
代入得
3×(y+3)-8y=14
y=-1
所以x=2
这个二元一次方程组的解
x=2
y=-1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。