说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一元高次方程
1)  linear equation of higher degree
一元高次方程
1.
This article solves the problem of Viete Theorem s application in finding the solution of one kind of linear equation of high- er degree,through analyzing the application factor of Viete Theorem in a kind of linear equation of higher degree.
本文通过分析韦达定理在一类一元高次方程中的应用条件,解决韦达定理在求解一类一元高次方程中的应用问题。
2)  linear equation in one variable
一元一次方程
3)  univariate cubic equation
一元三次方程
1.
Based on the solution to univariate cubic equation,this paper puts forward a rigorous coordinate conversion method from geocentric system to geodetic system.
基于一元三次方程的求解,给出了地心坐标向大地坐标转换的严密计算公式,并用算例说明了其正确性。
2.
Based on the solution to univariate cubic equation,this paper puts forward a rigorous coordinate conversion method from Cartesian system to geodetic system.
基于一元三次方程的求解,给出了空间直角坐标向大地坐标直接转换的严密计算公式,并用算例说明了其正确性。
4)  quartic equation
一元四次方程
1.
In the light of solution of predicted fire point of antiaircraft gun,on the basis of graphic method,by use of sulving the equation,the paper put forward solutions on precision higher:"adjust-coefficient method","graphic approach mehtod" and "quartic equation method".
针对高炮射击解提前点方法进行的研究,在图解法的基础上,运用解方程的思想,提出了精度更高的“系数调整法”、“图解逼近法”和“一元四次方程法”。
2.
In this paper, we discuss when a quartic equation has no real roots, and obtain a necessary and sufficient condition on a quartic equation which has no real roots.
本文讨论了一元四次方程无实根的一些充分、必要条件,并得到了一元四次方程无实根的一个充要条件。
3.
Two algorithms on solving quartic equation are introduced,and their accuracies and stabilities in numerical computation are analyzed in this paper.
介绍了一元四次方程的2种根式算法,并分析了2种根式算法解的精度。
5)  general polynomial
一元n次方程
1.
The algorithm for determining all roots of general polynomials;
一元n次方程根的一种数值求解方法
6)  simple cubic equation
一元三次方程
1.
This paper introduces the method from generality to standardization of the simple cubic equation,and shows the illustrated distribution of standardized real root,solving the distribution problem of optional simple cubic equation s real root.
本文介绍了一元三次方程一般式化为标准式的方法,并结合图形给出了标准式的实数根的分布情况,从而解决了任意一元三次方程的实数根的分布的问题。
2.
The method that simple cubic equation was changed from general to standard was introduced and the distribution of standardized real root was illustrated, which solved the problem of the distribution of any real root for simple cubic equation.
介绍了一元三次方程一般式化为标准式的方法,结合图形给出了标准式的实数根的分布情况,从而解决了任意一元三次方程的实数根的分布的问题。
补充资料:高次方程
未知数最高次数高于二的整式方程。一元二次、三次、四次方程都有根式解;而次数高于四的方程,除特例外一般无根式解。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条