1) P-regular
P正则
2) P quasi regular
P拟正则
1.
Discuss general Green relation ships and some more characteristics about P quasi regular semigroups on basic of ZHU Ping.
在朱平工作的基础上 ,继续探讨P拟正则半群的广义格林关系和一些性质 。
3) regular p-groups
正则p-群
1.
Using theory of finite regular p-groups and locally nilpotent groups, we get that if G is soluble and each proper infinite subgroupsis regular, and G is an extension of divisible abelian p-group of rank p-1 by a cyclic p-group.
利用有限正则p-群和局部幂零群的理论,得到:如果G是可解的非正则p-群,且G的每一个无限真子群是正则的,那么群G是秩为p-1的可除阿贝尔群被循环群的扩张。
4) p regularity
p正则性
5) P regular
P-正则
1.
Bipartite graphs with P regular endomorphism monoids are characterized.
刻划了具有 P-正则自同态幺半群的二分图 ,讨论了字典序积图的自同态幺半群的 P-正则性 。
6) p-regular elements
p-正则元
补充资料:非正则奇点
非正则奇点
irregular singular point
非正则奇点[i川铆山r应粤山r脚向t;Ilpper”,p.四oeo6翻、,,] 出自线性常微分方程解析理论的一个概念.设A(t)为nxn矩阵,它在t。笋的的有孔邻域内是全纯的,且在t。处有一奇点. 这时,点t。称为方程组 交=注(t)x(*)的奇点.非正则奇点有两个不等价的定义.按照第一个定义,t。称为(*)的非正则奇点,如果A(。)在亡。处具有阶数高于l的极点(见微分方程解析理论(analytic theoryofd迁比ren垃alequa石。朋)).按照第二个定义,t。称为(*)的非正则奇点,如果不存在数a>0,使得当t沿射线方向趋向于t。时,每个解x(t)的增长不比}t一t。!一“快(见〔31).情况t。=的,可通过变换t~t一’,化为情况t。二0.非正则奇点有时称为强奇点(例如,见E七朋d方程(Bessel闪皿石。n)).解在非正则奇点的一个邻域内可以作渐近展开;H.Poinca记最早研究了这个问题(【l」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条