1) energy integral estimates
能量积分估计
2) stand volume estimation
林分蓄积量估计
3) energy estimation
能量估计
1.
The existence,reg- ularity,Uniqueness and stability of the global solution of these problems are proved by meatus of energy estimation and Galerkin method.
本文研究一类带三阶粘性项的广义 KdV—Burgers 型方程的周期边值问题,初值问题运用 Galerkin 逼近方法结合能量估计,得到了这些问题整体解的存在性,正则性,唯一性和稳定性等结果。
2.
Adaptive DS code acquisition threshold decision based on energy estimation in Real-tune is presented in the article, and its expression for detection and false alarm probability under L observation are given in the following.
提出基于实时能量估计的码捕获自适应门限调整方法,给出了任意L次独立观测时虚警概率和检测概率的表达式。
4) energy estimates
能量估计
1.
Introducing the space X_s and its norm,making uniform energy estimates to over-come the difficulty from large parameter λ,and utilizing Arzela Ascoli theoram,the title problem was solved.
引入X_s空间及其范数,进行一致的能量估计,克服了大参数λ的困难,借助于Arzela-Ascoli定理解决了拟线性双曲抛物耦合组的奇异极限问题。
5) energy method
能量估计
1.
The stability, convergence and error estimation are discussed by energy method.
本文针对一维非定常对流扩散方程,构造了一种对角元严格占优的CrankNicholson差分格式,利用能量估计的方法对该格式做了稳定性分析,收敛性收分析以及误差估计。
6) estimation of degeneration
能量估计
1.
Utilizing the estimation of energy and the estimation of degeneration together,and by the Banach fixed point theorem,the existence and uniqueness of the global solution are presented,as the initial valueand the non-linear term up(1-u) satisfy certain conditions.
当初值φ和非线性项up(1-u)满足一定条件时,利用衰减估计和能量估计相结合的方法,并由Banach不动点定理得到了整体解的存在唯一性。
2.
By utilizing the estimation of energy and the estimation of degeneration together,and by the Banach fixed point theorem,the existence and uniqueness of the global solution are presented,as the initial value φ and the non-linear term a(x)u~β|u|~γ satisfy some certain conditions.
当初值φ和非线性项a(x)uβuγ满足一定条件时,利用衰减估计和能量估计相结合的方法,并由B anach不动点定理得到了整体解的存在惟一性。
3.
With utilizing the estimation of energy and the estimation of degenerationtogether,and by the Banach fixed point theorem,the existence and uniquenessof the global solution are presented,as the initial valueφand the non-linearterm a(x)u~β|▽u|~γsatisfy some certain conditions.
当初值φ和非线性项a(x)u~β|▽u|~γ满足一定条件时,利用衰减估计和能量估计相结合的方法,并由Banach不动点定理得到了整体解的存在唯一性。
补充资料:广义能量积分
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条