1) Integral energy
积分能量
2) energy integral
能量积分
1.
Local energy integral of Birkhoffian systems;
Birkhoff系统的局部能量积分
2.
Relativistic generalized energy integral and whittaker equations;
相对论性的广义能量积分与广义Whittaker方程
3.
For the elliptic partial differential equations of variable coefficient,we obtain the product theorem of asymptotic expansions of energy integral as follows:B(w,v_h)=∑ni=1h~(2i)_e∫_ΩF_i(D~(2i-2)_x(v_(xx)φ))v_hdxdy+∑nj=1k~(2j)_e∫_ΩG_j(D~(2j-2)_y(u_(yy)φ))u_hdxdy+∑ni+j=2h~(2i)_ek~(2j)_e∫_Ω[F_(ij)(D~(2i-2)_xD~(2j)_y(u_(xx)φ))+G_(ij)(D~(2i)_xD~(2j-2)_y(u_(yy)φ))]v_hdxdy+R_(n,h).
针对变系数椭圆型方程矩形元,证明了能量积分的渐近展开具有如下的乘积定理:∫Ω∫Ωk2jh2iFi(D2i-2Gj(D2j-2B(w,uh)=∑ny(uyyφ))vhdxdy+ex(uxxφ))vhdxdy+∑nei=1j=1∫Ω∑nh2i[Fij(D2i-2eek2jxD2j-2y(uyyφ))]vhdxdy+Rn,h。
3) method of energy integra
能量积分法
4) weighted energy functional
加权能量积分
5) generalized energy integral
广义能量积分
1.
The result shows that the Birkhoffian system has generalized energy integrals and cyclic integrals.
结果显示 :Birkhoff系统存在广义能量积分和循环积分 ,每个积分可使Birkhoff系统降两
2.
In this article, the expression on the conditions under which the generalized energy integral exists is discussed,and the physical significance of the general energy integral is expounded.
讨论广义能量积分存在条件的表述,并阐明广义能量积分的物理意义。
6) Energy accumulation and allocation
能量积累和分配
1.
Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain;
松嫩平原羊草草甸草原主要植物种群能量积累和分配
补充资料:广义能量积分
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条