说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 向量比较定理
1)  vector comparison theorem
向量比较定理
1.
In terms of vector comparison theorem, interval stavility and robust stability for linear time-vary ing systems with non-linear disturbance are considered.
本文应用向量比较定理研究线性时变系统的区间稳定性和具非线性时变摄动的线性时变系统的鲁棒稳定性。
2)  vector comparison principle
向量比较原理
1.
In terms of vector comparison principle,Hurwitz stability of interval matrix was discussed on the target of continuous interval system.
利用向量比较原理,讨论了连续区间系统的稳定性,得到了区间矩阵Hurwitz稳定的充分(充要)条件。
3)  quantitative comparison
定量比较
1.
The emphasis should be put on the application of quantitative comparison of infrared spectra of the composition and structure of the crystallized solid materials.
利用红外光谱定量比较分析的原理,从定向及微区的角度研究晶化固态物质的成分、结构 等,有效地解决矿物、岩石、矿床乃至构造研究中的诸多问题。
4)  comparison theorem
比较定理
1.
The comparison theorem of bachward stochastic differential equations under non-Lipschitz condition;
非Lipschitz条件下倒向随机微分方程的比较定理
2.
Converse comparison theorems for reflected BSDEs with double obstacles;
带有双障碍的反射倒向随机微分方程的逆比较定理
3.
A kind of comparison theorem of multi dimensional FBSDE;
一类高维正倒向随机微分方程的比较定理
5)  Comparison theorems
比较定理
1.
Preconditioned Jacobi iterative method and comparison theorems;
预条件Jacobi迭代方法及比较定理
2.
In this paper, some comparison theorems for Dawson-Watanabe superprocesses are obtained.
本文讨论了超Dawson-Watanabe过程的Laplace变换之间的相互比较,得到了依赖于其底过程和分校特征的若干比较定理。
6)  comparing slopes
边向量比较
补充资料:比较定理


比较定理
comparison theorem

  比较定理【~脚血扣.目旧n;cP.,“朋祀孵姗},微分方程论中的 在假定一个辅助方程式或不等式(微分方程组或不等式组)具有某些性质的情况下,判断一个微分方程(或微分方程组)的解有特定性质的一个定理. 比较定理的例子.l)Stunn定理(Stunnt坛”-rem):方程 夕+尸(t)y=0,尸(·)任c[t。,tl]的任一非平凡解,在【t0,tl]线段上最多m(m)l)次等于零,如果方程 牙+q(t)z=0,q(·)EC【l。,t.】具有这一性质并且当气(t(t:时,q(t))P(t)(见川). 2)微分不等式(di丘比nt词恤闪回ity):问题 交,=不(t,xl,…,x,),x‘(r。)=xg,i=1,…,n的解当t)t0时,按分量是非负的,如果问题 夕,=g‘(t,yl,…,yn),y,(t。)=少P,i=l,…,n的解具有这一性质并且满足不等式 关(,,x:,…,x。)》g*(t,xl,…,x。), xP》少P,i=l,…,n, 鱿一八·一’ 子一》0,i,了=1,…,n,i关j axj(见[2]). 关于比较定理的,包括C比禅y印n定理的其他例子,见徽分不等式(山阮记吐闭i以月uality).关于偏微分方程的比较定理,例如可见[3]. 获取比较定理的一个丰富资源是向量函数的几叨州OB半攀厚浮(com岁江招on画丽口e)(见[4]一[7]).比较原理的想法如下.设微分方程组 又=f(r,x),x=(xl,…,x。)(l)和向量函数 V(r,x)=(V.(t,x),…,珠(t,x)), W(r,v)=(W,(,,v),…,班月(t,v))是给足的,其中v=(vl,…,v.).对于方程组(l)的任何解x(t),函数vj(t)=K(t,x(t)),j=l,…,m,满足等式屯(了)一丝黔卫+客黑碧关(r,·(了))·因此,如果不等式些黔全+息兴兴人(r,·)续二(£,。(,,、)),。2) J=1,…,爪得到满足,那么在微分不等式 马《代(t,v,,二,v,),z=l,一m(3)性质的基础上,就可以说出关于系统(3)的解函数砚(t;x(t))的某些性质.依次地知道了函数K(t,x)在方程组(l)的每个解x(O上的性质,就能够对方程组(I)解的性质作出判断. 例如,设向量函数V。,x)和W(t,的满足不等式(2),且对任意tl)t。,7》o,设数M>。存在,使得对所有t任[t。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条