1) converse comparison theorem
反比较定理
1.
,we put forward and prove a general converse comparison theorem.
在由彭实戈引入的倒向随机微分方程的最基本的条件下,提出并证明了一个一般的反比较定理。
2.
Under the most elementary conditions for backward stochastic differential equation (BSDE in short) introduced by Peng S G, a new converse comparison theorem for BSDEs has been proved in this paper, based on investigating the relations between the generator and the solutions of BSDEs.
通过研究倒向随机微分方程的解与其生成元的关系,在由彭实戈引入的倒向随机微分方程的最基本的条件下,证明了一个反比较定理。
2) comparison theorem
比较定理
1.
The comparison theorem of bachward stochastic differential equations under non-Lipschitz condition;
非Lipschitz条件下倒向随机微分方程的比较定理
2.
Converse comparison theorems for reflected BSDEs with double obstacles;
带有双障碍的反射倒向随机微分方程的逆比较定理
3.
A kind of comparison theorem of multi dimensional FBSDE;
一类高维正倒向随机微分方程的比较定理
3) Comparison theorems
比较定理
1.
Preconditioned Jacobi iterative method and comparison theorems;
预条件Jacobi迭代方法及比较定理
2.
In this paper, some comparison theorems for Dawson-Watanabe superprocesses are obtained.
本文讨论了超Dawson-Watanabe过程的Laplace变换之间的相互比较,得到了依赖于其底过程和分校特征的若干比较定理。
4) converse comparison theorem
逆比较定理
1.
A converse comparison theorem for some backward stochastic differential equations
一类倒向随机微分方程的逆比较定理
2.
The converse comparison problem of reflected backward stochastic differential equations(RBSDEs) with double obstacles was explored,and some converse comparison theorems for the generators under some suitable conditions were established.
讨论了带有双障碍的反射倒向随机微分方程的逆比较问题,在适当的条件下建立了几个关于其生成元的逆比较定理。
5) comparisontheorem
比较性定理
6) Sturm comparison theorem
Sturm比较定理
1.
Sturm comparison theorems of solutions for second order nonlinear differential equations;
二阶非线性微分方程解的Sturm比较定理
2.
Some differential inequalities are established, and the oscillation for the second order neutral nonlinear differential equations are discussed and some Sturm comparison theorems are obtained.
通过建立几个微分不等式,讨论了一类二阶非线性中立型微分方程的振动性,将经典的Sturm比较定理推广到中立型微分方程,得到几个新的Sturm型比较定理。
3.
On the basis of the sturm comparison theorem of solution for the third order homogeneous linear differential equations,the third order homogeneous linear differential equations reaches the distance between adjacent zero point.
研究了一类三阶线性齐次微分方程解的相邻零点之间的距离问题,在三阶线性齐次微分方程解的Sturm比较定理的基础上得出了相邻零点之间的距离,所得结论推广了现有文献的相应结论。
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条