1) Reduced weakly regular ring
Reduced弱正则环
2) weakly regular ring
弱正则环
1.
Some properties on group-graded weakly regular rings;
群分次弱正则环的若干性质
2.
Some conditions for a weakly regular ring to be right nonsingular ring are discussed.
讨论弱正则环成为右非奇异环的若干条件 ,指出 MERT环上每个奇异单右 R模是 YJ内射模时 ,R为右非奇异环 ;同时给出一个环成为弱正则环的条件 ,证明了每个单右 R 模是 p 内射模时 ,R为弱正则环 。
3) reduced ring
reduced环
1.
Every reduced ring is semicommutative.
称环R是reduced环,如果它没有非零的幂零元。
2.
Suppose R is Reduced ring,α1,α2 is R s consistent endomorphism, T(R;α,β)is special matrix sub-ring determined byα1 andα2.
设R是Reduced环,α1,α2是R的相容自同态,T(R;α,β)是由α1和α2决定的一类特殊的R上的三阶矩阵子环。
3.
We show that a special subring of upper triangular matrix ring over a reduced ring is semicommutative.
我们证明了reduced环上的上三角矩阵环的一类特殊子环是半交换环。
4) strong(weak) regular ring
强(弱)正则环
5) Right Weakly regular ring
右弱正则环
6) regular weak HX ring
正则弱HX环
补充资料:reduced variables
分子式:
CAS号:
性质: 实际气体的对比温度(reduced temperature)Tr、对比压力(reduced pressure)pr、对比体积(reduced volume) Vr,的总称。三者分别定义为Tr=T/Tc, pr=p/pc,Vr=Vm/Vm,c,其中T、p、Vm和Tc、pc、Vm,c分别是实际气体的温度、压力、摩尔体积和对应的临界参量。
CAS号:
性质: 实际气体的对比温度(reduced temperature)Tr、对比压力(reduced pressure)pr、对比体积(reduced volume) Vr,的总称。三者分别定义为Tr=T/Tc, pr=p/pc,Vr=Vm/Vm,c,其中T、p、Vm和Tc、pc、Vm,c分别是实际气体的温度、压力、摩尔体积和对应的临界参量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条