1) Two-dimensional Volterra Integral Equation
二维Volterra积分方程
2) Two-Dimensional Nonlinear Volterra Integral Equation
二维非线性Volterra积分方程
3) Volterra integral equation
Volterra积分方程
1.
The Existence Theorems of Volterra Integral Equations;
Volterra积分方程解的存在性
2.
In this paper,our main purpose is to introduce the theorem of Banach Contraction Mapping and the application of the System of Linear Eqations,Implicit Function existence,Ordinary Differential Equation and the Volterra Integral Equation.
文章介绍了压缩映象原理及其在解决线性方程组、隐函数存在性、常微分方程和Volterra积分方程解的存在唯一性等四个方面的重要应用。
3.
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems.
对于径向变形的压电空心圆柱和空心球弹性动力学问题,丁皓江等最近的研究表明,可以将它转变为关于一个时间函数的第二类Volterra积分方程,使求解工作得到极大的简化,又使探索第二类Volterra积分方程的快速而又高精度的数值解法成为一个关键。
4) Volterra integro-differential equations of the second kind
第二类Volterra积分微分方程
5) second-type Volterra Integral Equations
第二类Volterra型积分方程
6) Volterra integro-differential equation
Volterra积分微分方程
1.
The hp-discontinuous Galerkin time-stepping method is discussed for quasilinear Volterra integro-differential equations with weakly singular kernels.
用hp-时间间断Galerkin方法讨论拟线性带弱奇异核的Volterra积分微分方程。
2.
This paper deals with a new existence theory for positive periodic solutions to a kind of nonautonomous Volterra integro-differential equations by employing a fixed point theorem in cones.
该文通过使用锥不动点定理,研究了一类非自治Volterra积分微分方程周期正解的一个新的存在性理论,把一般结果应用于几类具时滞的生物数学模型时,改进了一些已知结果,并得到了一些新的结果。
3.
In this paper,by means of constructing a new Liapunoves function,we obtain some sufficient conditions of stability and boundedness of Volterra integro-differential equation and extend some results in -
该文构造新的Liapunov泛函,得到判定Volterra积分微分方程的解有界、零解稳定的充分条件,推广文[1]—[3]中相应的结果。
补充资料:Abel积分方程
Abel积分方程
Abel integral equation
Abel积分方程【Abel in.雌旧equ硕皿A6eJ.“I.Tef-pa月b.0吧坪朋业服e飞 积分一厅程 i黯*一f(x),、均这个方程是在求解Abel问题(Abel Problem)时推出 的.方‘程 i恶:*二f(x),一“、2)称为广义Abel积分方程(罗neralized Abel irlte『aleqUation).其中a>o,0<,<】是已知常数,厂(x)是已 知函数,而诚x)是未知函数.表达式(x一s)““称为Abel 积分方程的核( kernel)或Abel核(Abel kernel).Abel 积分方程属于第一类v日te皿方程〔Volterra equa- tion).方程 争一里红上-ds_,、x、.。、*、。。3) 么}x一s}- 称为具有固定积分限的Abel积分方程(Abel integral 叫uation with fixed limits). 如果f(x)是连续可微函数,则Abel积分方程(2) 具有唯一的连续解,这个解由公式 sma,d今f(r、dt“、 坦《XI=——,一一川‘日‘曰‘‘‘‘~-叫、,厂 仃ax么(x一t),一“或者、、ina,!。a、今厂,(,、*1 叭戈今二—}一十l一}、J) 万l(x一“)’“么(x一t)’‘’{给出.公式(5)在更一般的假设下给出了Abel方程(2)的解(见【3},[4]).从而证明了(【3]):如果八;。)在区间【ab]一上绝对连续,则Abel积分方程(2)具有由公式(5)给出的属于Lebesgue可积函数类的唯一解关于Abel积分方程(3)的解,见121;亦见{61.【补注】(2)的左边也称为凡emann一Liouville分式积分,其中Re在
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条