说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Volterra延迟积分方程
1)  Volterra integral equations with delay
Volterra延迟积分方程
1.
This paper is concerned with the numerical stability of one-leg θ-methods for nonlinear Volterra integral equations with delay.
本文研究Volterra延迟积分方程单支θ-方法的数值稳定性,结果表明:当1/2≤θ≤1 时,单支θ-方法是全局稳定的,当1/2<θ≤1时,单支θ-方法是渐近稳定的。
2)  Volterra delay-integro-differential equations
Volterra型延迟积分微分方程
1.
Volterra delay-integro-differential equations(VDIDEs) arise widely in scientific fieldssuch as physics ,biology,ecology,control theory and so on.
Volterra型延迟积分微分方程(VDIDEs)广泛运用于物理学,生物学,生态学及控制论等科学领域,延迟积分微分方程通常很难获得理论解的解析式,因此研究这类方程的数值方法是十分必要的。
3)  Volterra discrete-distributed type delay-integro-differential equations
Volterra离散-分布型延迟积分微分方程
4)  nonlinear Volterra delay-integro-differential equation with neutral type
非线性中立型Volterra延迟积分微分方程
5)  delay integral equation
延迟积分方程
1.
Existence of positive almost periodic type solutions for some nonlinear delay integral equations;
一类非线性延迟积分方程概周期型解的存在性
2.
Using fixed point theorems, in this paper we give sufficient conditions of the existence of asymptotically -almost-periodic solution for some nonlinear delay integral equations.
利用不动点理论,给出了一类非线性延迟积分方程正的渐近概周期解存在的充分条件。
3.
The author discusses the existence of almost periodic type solutions for some nonlinear delay integral equations by using fixed points theory on Hilbert projective metric.
利用关于Hilbert投影度量不动点理论,讨论了一类非线性延迟积分方程概周期解和渐近概周期解的存在性。
6)  Volterra integral equation
Volterra积分方程
1.
The Existence Theorems of Volterra Integral Equations;
Volterra积分方程解的存在性
2.
In this paper,our main purpose is to introduce the theorem of Banach Contraction Mapping and the application of the System of Linear Eqations,Implicit Function existence,Ordinary Differential Equation and the Volterra Integral Equation.
文章介绍了压缩映象原理及其在解决线性方程组、隐函数存在性、常微分方程和Volterra积分方程解的存在唯一性等四个方面的重要应用。
3.
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems.
对于径向变形的压电空心圆柱和空心球弹性动力学问题,丁皓江等最近的研究表明,可以将它转变为关于一个时间函数的第二类Volterra积分方程,使求解工作得到极大的简化,又使探索第二类Volterra积分方程的快速而又高精度的数值解法成为一个关键。
补充资料:Abel积分方程


Abel积分方程
Abel integral equation

Abel积分方程【Abel in.雌旧equ硕皿A6eJ.“I.Tef-pa月b.0吧坪朋业服e飞 积分一厅程 i黯*一f(x),、均这个方程是在求解Abel问题(Abel Problem)时推出 的.方‘程 i恶:*二f(x),一“、2)称为广义Abel积分方程(罗neralized Abel irlte『aleqUation).其中a>o,0<,<】是已知常数,厂(x)是已 知函数,而诚x)是未知函数.表达式(x一s)““称为Abel 积分方程的核( kernel)或Abel核(Abel kernel).Abel 积分方程属于第一类v日te皿方程〔Volterra equa- tion).方程 争一里红上-ds_,、x、.。、*、。。3) 么}x一s}- 称为具有固定积分限的Abel积分方程(Abel integral 叫uation with fixed limits). 如果f(x)是连续可微函数,则Abel积分方程(2) 具有唯一的连续解,这个解由公式 sma,d今f(r、dt“、 坦《XI=——,一一川‘日‘曰‘‘‘‘~-叫、,厂 仃ax么(x一t),一“或者、、ina,!。a、今厂,(,、*1 叭戈今二—}一十l一}、J) 万l(x一“)’“么(x一t)’‘’{给出.公式(5)在更一般的假设下给出了Abel方程(2)的解(见【3},[4]).从而证明了(【3]):如果八;。)在区间【ab]一上绝对连续,则Abel积分方程(2)具有由公式(5)给出的属于Lebesgue可积函数类的唯一解关于Abel积分方程(3)的解,见121;亦见{61.【补注】(2)的左边也称为凡emann一Liouville分式积分,其中Re在
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条