1) coflat resolution
余平坦分解
1.
The concepts of coflat module and coflat resolution on rings with identity are discussed,and a series of results are obtained.
给出了有单位元的环上的余平坦模和余平坦分解概念,得到了一系列结果。
2) FP-flat decompositions
FP-平坦分解
1.
The main problems solved are that the flat decompositions are generalized to FP-flat decompositions,and some important properties of FP-flat modulus are described through dimensions in another way.
解决的主要问题是把模的平坦分解推广为FP-平坦分解,利用维数从另一个角度来描述FP-平坦模的一些重要性质。
3) τ-flat decompositions
τ-平坦分解
1.
Thia article generalized flat decompositions to τ-flat decompositions and gave the concept of τ-flat dimensions.
把模的平坦分解推广为τ-平坦分解,给出τ-平坦维数的定义,并利用τ-平坦维数刻画τ-平坦模的一些重要性质。
4) coflat module
余平坦模
1.
Using coflat modules and M-semi-hereditary rings, it is obtained that R is a semi- hereditary ring iff the factors of E(R) is coflat iff R is a R-semi-hereditary ring iff the sum of two injective submodules in a module that are isomorphic is coflat.
用余平坦模和M-半遗传环刻画了半遗传环,得到:R是半遗传环,当且仅当E(R)的商是余平坦模,当且仅当R是R-半遗传环,当且仅当每个模的任意两个同构内射子模的和是余平坦模。
2.
The concept of coflat on LLU Rings are given,some results are obtained about homology,and the results between FP-injective module and coflat module are give
给出了LLU环上的余平坦模的概念,得到了余平坦模的一些同调结果,并给出了FP-内射模与余平坦模的关系。
3.
R is sufficient condition of IF rings,where R is coherent rings and R_R and ()_RR is coflat module.
利用模论的方法得出有关余平坦模与凝聚环的关系。
5) coflat
余平坦模
1.
Some conclusions about coflat modules are given.
给出了余平坦模的几个命题。
2.
This paper gives the concept of M-coflat modules and coflat on N.
I环上的M-余平坦模和余平坦模的概念,得到了一系列有趣的结果。
6) small flat modules
多余平坦模
补充资料:余一余三
1.《礼记.王制》:"以三十年之通,制国用。"孔颖达疏:"每年之率,入物分为四分,一分拟为储积,三分而当年所用。二年又留一分,三年又留一分。是三年揔得三分,为一年之蓄。三十年之率,当有十年之蓄。"又《汉书.食货志上》:"民三年耕,则余一年之畜……三考黜陟,余三年食。"后遂以"余一余三"谓连年丰收,家有储粮,国库充盈。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条