1) bi-order convex set
双序凸集
2) order-convex set
序凸集
1.
The representation theorem with order-extremal points is obtained for compact order-convex sets.
研究了序凸集的一些运算性质,得到了紧序凸集的序端点表示定理。
3) biorder-convex cover
双序凸包
4) local biorder-convexity
双序局部凸
1.
In this paper,at first,we discuss the conditions of topotogical linear spaces with the local biorder-convexity;then discuss the relations between the local biorder-convexity and biordering positive decompositon;at last,discuss the super efficieney by using the local biorder-convexity.
本文首先讨论了双序拓扑线性空间具有双序局部凸性的条件,然后讨论了双序局部凸性与线性泛函双序正分解的关系。
5) biordered set
双序集
1.
This paper proves some important properties of rectangular biordered set and shows relations between rectangular band and its idempotent set which is a rectangular biordered set.
本文从研究矩形的双序集性质入手,推导出矩形带半群与它的幂等元双序集,即矩形的双序集之间的一些重要关系。
2.
Biordered set property and the representation φ which is a morphism from E into T(X)×T~*(Y) are the main tools.
从幂等元的双序集性质和双序集E到半群T(X)×T*(Y)的单同态φ的性质出发,讨论了一类五元素的双序集所对应的半群的结构。
3.
It is the first paper to introduce the theory of biordered sets systematicly.
本文是系统介绍双序集理论的第一篇文章,文中介绍了双序集产生的历史背景、双序集的基本定义与性质及双序集与半群的本质联系。
6) locally biorder-convex space
局部双序凸空间
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条