1) group transformation
群变换
1.
In this paper, the Noether s theorem and its inverse theorem for nonholonomic nonconservativesystem in phase spece are obtained by use of the transformation property of the active integral of dy-namical systems under infinitesimal group transformation in phase space.
本文根据动力学系统在相空间的作用积分在无穷小群变换下的变换性质,得到了非完整非保守系统在相空间的Noether定理和逆定理。
2) Transformation Group
变换群
1.
Presents that geometric invariants in the perspective homology transformation group are applied to process and verify the solutions of 3D reconstruction for robot vision.
运用透视同素变换群中的几何不变量对机器人视觉中的三维重建的解进行处理和验证。
2.
In this paper we show strict relation between the intuitionific fuzzy groups of transformation group in S and intuitionfic similarities on S,i.
研究集合S上的变换群的直觉模糊子群和S上的直觉相似关系之间的密切联系,证明了S上的变换群的任一直觉模糊子群可确定S上的一个直觉相似关系,反之,S上的任一个直觉相似关系可确定S上的变换群的一个直觉模糊子群。
3.
Along the way of creating problem situation , guessing , testifying, refuting, re-guessing and re-testifying, a case of explorative teaching on a basic theorem of transformation group is given.
变换群是一类重要的群,按照创设问题情境、猜测、验证、反驳、再猜测、 再验证的探究思路,给出了变换群基本定理的一个具体探究教学设计。
3) Lie Group transformation
李群变换
1.
Based on the assumptions of semi logarithmic relationship between coefficient of permeability and void ratio as well as the relationship between effective stress and void ratio of soil, the method of Lie Group Transformation is applied to solve the non linear partial differential equation of large strain consolidation of homogeneous saturated clay in semi infinite domain.
基于有效应力与孔隙比以及渗透参数与孔隙比之间的关系的一些假定 ,采用李群变换求解考虑材料非线性和几何非线性的半无限均质土体大变形固结非线性偏微分方程 ,得到了一个不考虑自重固结的完全解析解。
4) Lie Group transformation
Lie群变换
1.
And its analytical solution under such conditions as initial and boundary conditions is obtained by the method of the Lie group transformation.
讨论了潜水一维非稳态运动Boussinesq方程的对称性,并采用Lie群变换,就某些边界条件求出了其解析解,以便与线性化近似理论作比较;在此基础上,分析了Boussinesq方程线性化所引起的误差问题,并得到了特定条件下严格的零误差线性化方法。
5) group of transformation
变换群
1.
In this paper,all symmetries of the generalized kdv equation are obtained by means of infinitesimal generator of Lie group of transformation.
本文用 Lie变换群的无穷小方法 ,求出了广义 kdv方程的全部对称 ,并用特殊的对称将其化为常微分方程 。
6) transformation groups
变换群
1.
In this paper applying Morgan s two parameter transformation groups theory, we analyzed the similarity solution for incompressible unsteady laminar natural convective boundary layer flow on a vertical stretching sheet.
用Morgan的双参数变换群理论,对磁场作用下的伸展垂直薄片的不可压缩非定常层流自然对流边界层流动进行相似性分析,得到了三种情况下的相似性解方程组。
补充资料:Lie变换群
Lie变换群
Lie tTansformation group
lie变换群【块加璐而扣险d佣,洲甲;瓜印y朋a即eo6-pa3o.anH‘」 一个连通位群(Lie grouP)G在一个光滑流形(Inanjfold)M上的光滑作用,即满足下列条件的一个光滑映射(C.类的)A:G xM~M二 I)A(g‘g“,水)=A(g‘,A(g“,m)),对一切g‘,g”〔G,m任M; 11)A(e,m)=m,对一切mcM(e是群G的单位元). 如果作用A还满足条件 111)若‘A(g,m)=m对一切mc材,则g二。,那么就称为有效的(e伍戈ti记). Lie变换群的例.一个Lie群G在一个有限维向量空间M内的任意光滑线性表示;Lie群G分别通过左或右平移作用在自身上,A(gm)=g。或A(g,川)=胡g一’(g,meG);Lie群G通过内自同构作用在自身上,A(g,m)=gmg一‘(g,m已G);以及单参数变换群(one一pan刃r巴ter uansfom以tion grouP),即群R在一个流形M上的光滑作用. 与上面所定义的整体Lie变换群一起,还考虑局部L记变换群(local疏tm刀sfon丁以tion grou邵),它们是Lie群经典理论的主要论题.代替G考虑一个局部lie群(乙e脚up,local),就是某个Lje群G内单位元的一个邻域U,而代替M考虑一个开子集训zCR”. 如果G是M上一个Lie变换群,那么通过在G内选取一个适当的邻域U3e和一个开子集W CM,就得到一个局部Lie变换群.相反的步骤,由一个局部Lie变换群到一个整体赚变换群(整体化(乡由all-左石on)),并非永远可能.然而如果dimM提4且砂足够小,那么整体化是可能的(见【21). 有时考虑C“类,1簇k簇田,或C“类(解析)Lie变换群,即假定A属于相应的类.如果A是连续的,那么要它属于C人或C“,只需对于任意夕‘G,M的变换A,二,一A(g,m)也属于这个类(见汇31).特别,对于作用在M上的Lie变换群G的讨论等价于对于G到M的带有自然拓扑的微分同胚群d订M内一个连续同态G~diffM的讨论. 对于任意Lie变换群G来说,有一个G的Ue代数(Lieal罗bla)g到M上光滑向量场的L记代数小(M)内的同态A.二g一中(M)与之对应,这在元素X〔g与单参数变换群 (r,水)~A(exP rX,川)的速度场之间建立了一个对应关系,这里t任R,m‘M而exp:g~G是指数映射(expollenhal mapping)(见〔5]).如果G是有效的,则A.是单射.对于一个连通L记群G来说,同态A,完全确定了这个Lje变换群.反之,对于任意同态刀二g~。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条