1) measure of weak noncompactness
弱非紧性测度
2) weakly noncompact measures
弱非紧型测度
3) Deblasi weakly non-compact measure
Deblasi弱非紧型测度
4) measure of noncompactness
非紧性测度
1.
Under the ordered conditions and noncompactness measure conditions,the existence of positive periodic solution for second-order ordinary differential equation in Banach space was proved by accurately calculating the measure of noncompactness and employing fixed-point index theorems of condensing map.
在一定的序条件及非紧性测度条件下,通过非紧性测度的精细计算,运用凝聚映射的不动点指数理论获得有序Banach空间二阶常微分方程的正周期解的存在性。
2.
Under the nonmonotone conditions,the results of existence of periodic boundary value problem of second order ordinary differential equation in Banach space is obtained by employing measure of noncompactness,degree of condensing map and Sadvoskii fixed point theorem.
在Banach空间中,非线性f(t,u)项关于u非单调条件下,讨论了二阶常微分方程周期边值问题解的存在性,所用的工具是非紧性测度,凝聚映射的拓扑度及Sadovskii不动点定理。
3.
In this paper, we get a new fixed point theorem via the measure of noncompactness in locally convex spaces first.
首先利用局部凸空间非紧性测度得到了一个新的不动点定理;接着运用此定理来讨论局部凸空间中Fredholm型非线性积分方程解的存在性,并应用到弱拓扑结构下Fredholm型非线性积分方程解的存在性的讨论。
5) noncompactness measure
非紧性测度
1.
By using the theory of noncompactness measure and topological degree of condensing map,some existence and uniqueness results of these problems are obtained.
利用非紧性测度的性质与凝聚场拓扑度理论,在一般Banach空间中,获得了二阶周期边值问题解的存在与唯一性结果。
2.
The theory of noncompactness measure and Sadovskii fixed point theorem of condensing map are applied to these problems,and some existence and uniqueness results are obtained.
讨论了一般Banach空间高阶周期边值问题解的存在性,利用非紧性测度与凝聚映射的Sadovskii不动点定理,获得了其解的存在性与唯一性结果。
3.
The theory of noncompactness measure and Sadovskii fixed point theorem of condensing map are applied to study the existence of periodic solution for certain nonlinear evolution equations with noncompact semigroup in Banach space.
利用非紧性测度的性质与凝聚映射的Sadvoskii不动点定理,讨论了Banach空间中具有非紧半群的一类非线性发展方程周期解的存在性。
6) measure of non-compactness
非紧性测度
1.
In this paper,we investigate the existence of solutions for nonlinear impulsive Volterra integral equations in locally convex spaces by using the measure of non-compactness and generalized fixed point theorem.
利用局部凸空间中非紧性测度的基本性质,推广了一个不动点定理,然后应用此定理研究了局部凸空间中一类非线性脉冲Volterra型积分方程解的存在性,推广了已有文献的结果。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条