1) Hausdorff's measure of noncompactness
Hausdorff非紧性测度
2) Hausdorff measure of noncompactness
Hausdorff非紧测度
1.
We derive conditions in respect of the Hausdorff measure of noncompactness under which the mild solutions exit.
本文讨论了可分Banach空间中具有非局部初值条件的半线性微分方程在Hausdorff非紧测度条件下广义解的存在性。
2.
The existence of mild solutions to such equations is obtained by using the theory of Hausdorff measure of noncompactness and Darbo s fixed point theorem,without the compactness assumption on associated evolution system.
利用Hausdorff非紧测度理论和Darbo不动点定理,得到在相关发展系统失去紧性等较弱的条件下发展方程适度解的存在性,推广和改进了一些已知的结果。
3.
The existence of mild solutions to such equations is obtained by using the theory of the Hausdorff measure of noncompactness and Darbo-Sadovskii fixed point theorem,without the compactness assumption on associated evolution system.
利用Hausdorff非紧测度理论及Darbo-Sadovskii不动点定理,研究Banach空间中在相关发展系统失去紧性的情况下中立型双扰动发展方程适度解的存在性,推广和改进了一些已知结果。
3) Compact Hausdorff measure spaces
紧Hausdorff测度空间
4) measure of noncompactness
非紧性测度
1.
Under the ordered conditions and noncompactness measure conditions,the existence of positive periodic solution for second-order ordinary differential equation in Banach space was proved by accurately calculating the measure of noncompactness and employing fixed-point index theorems of condensing map.
在一定的序条件及非紧性测度条件下,通过非紧性测度的精细计算,运用凝聚映射的不动点指数理论获得有序Banach空间二阶常微分方程的正周期解的存在性。
2.
Under the nonmonotone conditions,the results of existence of periodic boundary value problem of second order ordinary differential equation in Banach space is obtained by employing measure of noncompactness,degree of condensing map and Sadvoskii fixed point theorem.
在Banach空间中,非线性f(t,u)项关于u非单调条件下,讨论了二阶常微分方程周期边值问题解的存在性,所用的工具是非紧性测度,凝聚映射的拓扑度及Sadovskii不动点定理。
3.
In this paper, we get a new fixed point theorem via the measure of noncompactness in locally convex spaces first.
首先利用局部凸空间非紧性测度得到了一个新的不动点定理;接着运用此定理来讨论局部凸空间中Fredholm型非线性积分方程解的存在性,并应用到弱拓扑结构下Fredholm型非线性积分方程解的存在性的讨论。
5) noncompactness measure
非紧性测度
1.
By using the theory of noncompactness measure and topological degree of condensing map,some existence and uniqueness results of these problems are obtained.
利用非紧性测度的性质与凝聚场拓扑度理论,在一般Banach空间中,获得了二阶周期边值问题解的存在与唯一性结果。
2.
The theory of noncompactness measure and Sadovskii fixed point theorem of condensing map are applied to these problems,and some existence and uniqueness results are obtained.
讨论了一般Banach空间高阶周期边值问题解的存在性,利用非紧性测度与凝聚映射的Sadovskii不动点定理,获得了其解的存在性与唯一性结果。
3.
The theory of noncompactness measure and Sadovskii fixed point theorem of condensing map are applied to study the existence of periodic solution for certain nonlinear evolution equations with noncompact semigroup in Banach space.
利用非紧性测度的性质与凝聚映射的Sadvoskii不动点定理,讨论了Banach空间中具有非紧半群的一类非线性发展方程周期解的存在性。
6) measure of non-compactness
非紧性测度
1.
In this paper,we investigate the existence of solutions for nonlinear impulsive Volterra integral equations in locally convex spaces by using the measure of non-compactness and generalized fixed point theorem.
利用局部凸空间中非紧性测度的基本性质,推广了一个不动点定理,然后应用此定理研究了局部凸空间中一类非线性脉冲Volterra型积分方程解的存在性,推广了已有文献的结果。
补充资料:Hausdorff测度
Hausdorff测度
Hausdorff measure
F恤旧白心测度【Ila.画如心~;xa”绷叩加MePa] 定义在度量空间X的Bo心。代数践上的一类测度的总名称,其构造如下:设贬为X的某一开子集类,,={l(A):A任盯}为定义在吸上非负函数,并设 ‘(B,”一“{各‘以):(A、,二、人),”C日氏任‘, di剐卫月:蕊。,。=l,2,·“},其中下确界取遍BO川集B的一切有限或可数覆盖{人},A。“纵,访,B CX且每个戒的直径不超过。.用类吸与函数l确定的Ha峪如湃测度(Ha议泪orfr nlea-s眠)又是下面的极限 又(B卜殃又(B,s). Ha议心0盯测度的例.1)设级为X中一切球族,并令l(A)=(山山吐A)区,以>0.相应的测度又称为Ha困dO币“测度(H al目。甫二~n飞习sure)(对“=1称线性Ha毯列的叮测度(Unearl]以田面叮刀1沈‘切限),对“=2称平面Ha璐·do甫测度(p」aneHa出do甫~昵).2)令X=R”十’并令吸为以R”中球为底而轴平行于坐标轴O气+l的圆柱体的集合;令I(A)为圆柱体A‘级的戈,.轴向截口的n维体积;相应的Hausdo甫测度称为柱测度(cylindri-caln飞芝巧切民). Haodo盯测度为F.Hal翻o叮(fl])所引进.【补注】C.Ca份th德odory于1914年引进了在度量空间上构造测度的方法.级中元素可以是随意的且常取作闭的.Hausdo叮测度在E劝旧a域上是汀可加的,但一般不是『有限的;对X,级与l必须附加某些限制以求获得下逼近的好性质.这种限制有,例如,X是某个紧度量空间的一个Bo闭子集,吸是X的闭子集类并且l取形如l(A)二h(di函rnA)的集函数,其中人为R十到R、的连续非减函数.如此得到的Ha议刁。甫测度是最常用的,且是A.5.跳Icoviteh与他的学派(见队8」)的主要研究对象;它们被称为(Ha璐dO甫)h测度(若h(t)=犷,:‘R*,则称为“测度或“维测度;亦见F压四面心维数(E区田如甫din℃邝ion)).当X为Eucl记空间R”时,如果:=陀,则:维测度等于I劲叹衅测度(址比g胆1议劝s眠)〔精确到一个常因子),并且如果仪=1,2,…,则限制于光滑曲线、曲面等时,它等于长度、面积等 .0测度为计数测度(countingn蓝习sule),它也属于位势理论与描述集合论的研究范围. 尽管Ha。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条