说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 序群胚
1)  Order groupoid
序群胚
2)  Groupoid
群胚
1.
Discussion on Symplectic-Affine Group and Groupoids;
关于辛仿射群和群胚上的讨论
2.
The Crossed Products on the Flow of Groupoid with Quasi-Invariant Measures;
具拟不变测度群胚流上的交叉积
3.
Let G be a second countale groupoid with Harr system{λU}, R be the real number group which left invariantly acts on G.
设G为第二可数群胚,具有Haar系{λn},R为实数群,左不变作用在G上。
3)  groupoids
群胚
1.
On the basis of the theory of groupoids and Lie algebroids, we mainly study two different difference discrete Lagrangian formulas which are defined on the Lie groupoid Q × Q and corresponding discrete variations.
本文在群胚和李代数胚理论的基础上,主要研究建立在李群胚Q×Q上的两种差分离散拉格朗日形式及相应的离散变分。
2.
In this paper,Lie group,Symplectic manifolds,Groupoids are treated as fundamental research subjects .
本文主要以李群、辛流形及群胚等为基本研究对象。
3.
On the basis of the theory of groupoids and Lie algebroids, we mainly study two different difference discrete Lagrangian formulas which are defined on the Lie groupoid Q×Q and corresponding discrete variations.
本文在群胚和李代数胚理论的基础上,主要研究建立在李群胚Q×Q上的两种差分离散拉格朗日形式及相应的离散变分。
4)  symplectic groupoid
辛群胚
1.
In this paper,we study the application of the momentum mapping to a Possion G-space and symplectic groupoids.
本文研究了矩映射在泊松G-空间及辛群胚中的应用。
2.
The geometric properties of Symplectic Groupoid were described.
本文利用群胚的有关知识证明了李群在基本群胚上的提升作用有余伴随等变的动量映射这一结论,进而刻划了辛群胚的几何性质。
3.
In this paper, we study the symplectic groupoids structure on the cotangent bundle of Lie group.
本文研究了李群的余切丛上的辛群胚结构。
5)  Lie groupoids
李群胚
1.
Discussions of Lie groupoids and Poisson actions;
关于李群胚和泊松作用的讨论
2.
Several Discussions on Lie groupoids;
关于李群胚的几点讨论(英文)
3.
Lie groupoids and Lie algebroids can be regarded as a natural generalization of the concept of Lie group and Lie algebras, but just as we know, they also have many characteristics of bundles.
李群胚和李代数胚可看作李群和李代数概念的一个自然推广,但正如所知,它也具有很多丛的特点。
6)  associated groupoids
相配群胚
1.
We defined the concept associated groupoids of a fiber bundles,and studied the relationship between principal bundles and Lie groupoids from its actions.
定义了纤维丛的相配群胚的概念,从作用的角度研究了李群胚与主丛的关系;给出了一个泊松群胚在泊松流形上的作用是泊松作用的充要条件;文末得到了一些关于泊松流形上Casimir函数的结果。
2.
In this paper,the new concepts of associated groupoids and associated prin- cipal bundle be introduced which are a pair of a locally trivial Lie groupoids(Γ→_→P,α,β) and a principal bundle(B,P,π,G)with the same transition function.
本文引入了相配群胚和相配主丛的概念,它们是一对具有相同传递函数的局部平凡李群胚(Г→_→P,α,β)和主丛(B,P,π,G)。
补充资料:同胚群


同胚群


同胚群【加.皿业户阮19叮Ip;~。oMop今.3M始r衅-nnal 把拓扑空间X映成自身的所有同胚映射组成的群皿(X)(亦见同胚(加~叨中比m职若X为紧流形,则除了同胚不计外,X由叭(X)的代数性质,特别是叭(X)的正规子群的结构所确定(【IJ).特别,当n砖4时,已知叭(罗)是单群(血甲卜g旧uP).对于Cal曲吐集(C缸ltorset),M响笋曲线(M。玛盯cur-ve),撇咖诬i曲线(s祀rp此ki~)以及实数直线上的有理点集与无理点集也都是如此(【2」).就流形M而言,叨(M)中的最小正规子群是在M的外部区域为恒同映射的那些同胚产生的子群. 群观(X)有各种不同的拓扑结构(见拓扑映射空间(sP别羌oflr坦PPln邵,topo沁乡司))具有基本重要性的有紧开拓扑(①mP叭一。岁,勿和拓罗)以及精细的C“拓扑(X是可度量化空间),其中恒同映射的邻域乌由严格正函数广X~(o,co)定义,并且h‘侧X)属于Of,如果对所有x有p(hx,x)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条