1) universal Toeplitz algebra
万有Toeplitz算子代数
1.
In this note, the universal Toeplitz algebra UTG+ (G) associated to such a quasi-partial ordered group is constructed.
相应于这样的一个拟偏序群(G,G+),构造了一个万有Toeplitz算子代数。
2) Toeplitz algebra
Toeplitz算子代数
1.
Let (G_1,E_1),(G_2,E_2)be two quasi-lattice ordered groups,and T_~(E_1),T_~(E_2) be the associated Toeplitz algebras.
设(G_1,E_1),(G_2,E_2)为两个拟格序群,记■~(E_1),■~(E_2)为相应的Toeplitz算子代数。
2.
Put GH = G+ H-1, and denote by TGH the corresponding Toeplitz algebra.
H-1, 令TGH为相应的Toeplitz算子代数。
3.
Let GH = Gt H-1 and gGH the associated Toeplitz algebra.
设(G,G_+)为一个拟格序群,H为G_+的可传定向子集,令C_H=G_+·H~(-1),~H为相应的Toeplitz算子代数。
3) toeplitz operator
Toeplitz算子
1.
Representation of Fredholm spectra and convexity of Toeplitz operators on Dirichlet spaces;
Dirichlet空间上的Toeplitz算子组的Fredholm谱表示及凸性
2.
Toeplitz Operators with Quasihomogeneous Symbols of Positive Degree;
正度拟齐次Toeplitz算子的乘积
3.
THE Toeplitz operators on Partial Hardy Space;
部分Hardy空间上的Toeplitz算子
4) Toeplitz operators
Toeplitz算子
1.
A class of Toeplitz operators on Dirichlet spaces of annulus;
圆环上的Dirichlet空间中一类Toeplitz算子
2.
Normality、Subnormality and Hyponormality of Toeplitz Operators and Products of Toeplitz Operators;
正规、次正规、亚正规的Toeplitz算子及Toeplitz算子乘积
3.
The theory of Toeplitz operators is a very wide area .
Toeplitz算子理论是一个很宽的领域。
5) Toeplitz type operator
Toeplitz型算子
1.
ln this paper we define some kind of Hankel and Toeplitz type operators,and study the compactness and S p-criteria for them.
本文中我们定义了一类Hankel和Toeplitz型算子 ,研究了它们的紧性和Sp 性质 。
6) toeplitz operator
Toeplitz 算子
1.
In this paper we discuss the hyponormality and normality of toeplitz operators on the Bergman space,we conclude if f,g∈H~∞ and T_f(T_g)~*=(T_g)~*T_f,then either f or g must be a constant.
讨论 Bergman 空间上 Toeplitz 算子的正规性及亚正规性问题。
2.
This paper is addressed to discuss two problems: the one is about the unitaryequivalence of Toeplitz operators on Bergman spaces and Dirichlet spaces whichis more complex than that on the classic Hardy spaces.
结果说明,在这两类空间上,Toeplitz 算子的酉等价问题比经典的Hardy 空间情形复杂。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条