1) multiToeplitz operator
多重Toeplitz算子
2) toeplitz operator
Toeplitz算子
1.
Representation of Fredholm spectra and convexity of Toeplitz operators on Dirichlet spaces;
Dirichlet空间上的Toeplitz算子组的Fredholm谱表示及凸性
2.
Toeplitz Operators with Quasihomogeneous Symbols of Positive Degree;
正度拟齐次Toeplitz算子的乘积
3.
THE Toeplitz operators on Partial Hardy Space;
部分Hardy空间上的Toeplitz算子
3) Toeplitz operators
Toeplitz算子
1.
A class of Toeplitz operators on Dirichlet spaces of annulus;
圆环上的Dirichlet空间中一类Toeplitz算子
2.
Normality、Subnormality and Hyponormality of Toeplitz Operators and Products of Toeplitz Operators;
正规、次正规、亚正规的Toeplitz算子及Toeplitz算子乘积
3.
The theory of Toeplitz operators is a very wide area .
Toeplitz算子理论是一个很宽的领域。
4) Toeplitz type operator
Toeplitz型算子
1.
ln this paper we define some kind of Hankel and Toeplitz type operators,and study the compactness and S p-criteria for them.
本文中我们定义了一类Hankel和Toeplitz型算子 ,研究了它们的紧性和Sp 性质 。
5) toeplitz operator
Toeplitz 算子
1.
In this paper we discuss the hyponormality and normality of toeplitz operators on the Bergman space,we conclude if f,g∈H~∞ and T_f(T_g)~*=(T_g)~*T_f,then either f or g must be a constant.
讨论 Bergman 空间上 Toeplitz 算子的正规性及亚正规性问题。
2.
This paper is addressed to discuss two problems: the one is about the unitaryequivalence of Toeplitz operators on Bergman spaces and Dirichlet spaces whichis more complex than that on the classic Hardy spaces.
结果说明,在这两类空间上,Toeplitz 算子的酉等价问题比经典的Hardy 空间情形复杂。
6) Dual Toeplitz operator
对偶Toeplitz算子
1.
We characterize essentially commuting dual Toeplitz operators with bounded measurable symbols and bounded pluriharmonic symbols on the Bergman space of the polydisk respectively.
在单位多圆盘的Bergman空间上,本文分别刻画了以有界可测函数和有界多重调和函数为符号的本质交换对偶Toeplitz算子。
2.
This paper deals with the dual Toeplitz operators on the orthogonal complement of the Fock space.
本篇硕士论文主要研究Fock空间之正交补空间上以平方可积函数为符号的对偶Toeplitz算子。
3.
We deal with commutativity of dual Toeplitz operators of the unit ball, such as the characterizations of commuting dual Toeplitz operators, essentially commuting dual Toeplitz operators and essentially semi-commuting dual Toeplitz operators.
本文主要研究单位球的Bergman空间上的紧算子,对偶Toeplitz算子的交换性和Nehari型定理以及Hankel算子乘积的有界性和紧性。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条