1) Spherical fractional integral of variable order
球面上的变阶分数次积分
2) fractional integration of variable order
变阶分数次积分
1.
A Lipschitz-space of variable order in mean sense is introduced,and the Lipschitz boundedness about fractional integration of variable order on sphere is researched.
本文引入一种平均意义下的变阶 Lipschitz空间 ,并讨论了球面上变阶分数次积分的Lipschitz有界性 。
3) spherical fractional integral
球面分数次积分
1.
This paper investigates the Zygmund property of spherical fractional integral on the sphere.
讨论了球面分数次积分的Zygmund性质。
5) spherical numerical integral
球面数值积分
1.
If the condition of uniform distribution on the sphere is ignored,a general expression of the spherical numerical integral formula based on the irregular distribution of N points on a sphere is introduced,and some spherical numerical integral formulas,which are based upon different division approaches on a sphere,are unified.
基于球面上N个点的Thomson均匀分布,提出了一种新的球面数值积分方法,并推导出相应的数值积分公式。
6) spherical integral
球面积分
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条