1) fractional integral
分数次积分
1.
Boundedness of fractional integral operators associated to the sections for non-doubling measures;
非二倍测度下截口上的分数次积分算子的有界性
2.
Riesz potential is an important operator in harmonic analysis,and fractional integral with a homogeneous kernel or a coarse kernel is a lively field arising from researches on Riesz potential.
Riesz位势是调和分析中的重要算子 ,具有齐性核或粗糙核的分数次积分 ,是围绕Riesz位势发展起来的一个非常活跃的课题 。
3.
In this paper we discuss the properties of two kinds of integral operator with variable kernel and prove that fractional integral operator with variable kernel TΩ,μ is bounded from Bp,λ1(Rn).
主要讨论两类带变量核的积分算子的性质,证明了带变量核的分数次积分算子TΩ,μ是从Bp,λ1(Rn)到Bq,λ2(Rn)上的有界算子,其交换子TbΩ,μ是从Bp,λ1(Rn)到Bq,λ2(Rn)上的有界算子。
2) fractional integral operator
分数次积分算子
1.
Boundedness of the fractional integral operator in weak type Hardy space;
分数次积分算子在弱Hardy型空间中的有界性
2.
The boundedness of fractional integral operators with homogeneous kernel in weak type Hardy spaces is discussed when the kernel of the operators satisfies Dini condition.
讨论具有齐性核的分数次积分算子 ,当核函数满足 Dini条件时在弱 H1 ( IRn)上的有界性问
3.
In this paper, certain orlicz-Hardy-sobolev spaces H_k~φ(R~n)and H_s~φ(R~n)are defined byusing fractional integral operators I~s; then, it proves, under certain condition, that Hφ(R~n) is equivalent to H_k~φ(R_n) when k is a non-negative integer.
本文通过研究分数次积分算子对Orlicz-Hardy空间H_φ(R~n)的作用,引入了势空间H_s~φ(R~n),并给出了其等价刻划,同时证明在一定条件下,当k为整数时,H_k~φ(R~n)等价于Orlicz-Hardy-Sobolev空间H_k~φ(R~n)。
3) fractional integral
分数次积分算子
1.
The boundedness is established of the commutators generated by Calderón-Zygmund operators or fractional integrals with RBMO(μ) functions or Lipschitz functions in Morrey spaces on nonhomogeneous spaces.
证明了由Calderón-Zygmund算子或分数次积分算子与RBMO(μ)函数以及Lipschitz函数生成的交换子在非齐型空间上的Morrey空间中的有界性。
2.
Sufficient conditions are given for fractional integral operater I α to be bounded from weighted weak Legesgue spaces with some range p into another suitable weighted BMO and Lipschitz spaces of order β .
给出了分数次积分算子从加权Lebesgue空间到加权Lipschitz空间有界性的充分条件 ,同时给出了从加权BMO空间到加权Lipschitz空间有界性的充要条
3.
In this paper we prove the following conclusions:(1)the fractional integral operator I_l and maximal operator M_l are bounded from K_(q1)~(α,p1)(1,ωα)to W K_(q2)~(α,p2)(1,ωβ), where q1=1,0<p1≤1,p1≤p2,0<β<1,α=β(n-l)/n,q2=n/(n-l),0<l<n andω_α(x)=|x|_(-α).
本文我们证明了如下结论: (1)分数次积分算子I_l与分数次极大算子M_l是K_(q1)~(α,p1)(1,ωα)到WK~(q2)~(α,p2)(1,ωβ)中的有界算子,其中q1=1,0
4) Fractional Cauchy-Stieltjes integrals
分数次Cauchy-Stieltjes积分
5) fractional integration of variable order
变阶分数次积分
1.
A Lipschitz-space of variable order in mean sense is introduced,and the Lipschitz boundedness about fractional integration of variable order on sphere is researched.
本文引入一种平均意义下的变阶 Lipschitz空间 ,并讨论了球面上变阶分数次积分的Lipschitz有界性 。
6) spherical fractional integral
球面分数次积分
1.
This paper investigates the Zygmund property of spherical fractional integral on the sphere.
讨论了球面分数次积分的Zygmund性质。
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条