1) EulerFrobenius polynomial
Euler-Frobenius多项式
2) Euler polynomial
Euler多项式
1.
In this paper,the Akiyama-Tanigawa algorithm for Bernoulli polynomials and Euler polynomials was investigated,a new kind of closed formulae for Bernoulli polynomials and Euler polynomials are given via Stirling numbers.
研究Bernoulli多项式和Euler多项式的Akiyama-Tanigawa算法,利用Stirling数分别给出它们的一类新的封闭计算公式。
2.
The relation between the Euler polynomials of higher order and Euler polynomials are presented,and the results of ZHANG Zhi zheng and HU Ting feng have been extended.
讨论了高阶Euler多项式和Euler多项式的关系,推广了张之正、胡廷锋的结
3.
By using the method of generation,the paper researches on the relationships among integral polynomial of Bernoulli s polynomials and Genocchi polynomials,as well as Euler polynomials,obtaing some beautiful identities.
利用发生函数,研究了Bernoulli积分多项式和Genocchi多项式,Euler多项式之间的关系,并得到了几个漂亮的恒等式。
3) Euler polynomials
Euler多项式
1.
Sum product involving Bernoulli polynomials and Euler polynomials;
一类包含Bernoulli多项式与Euler多项式的积的和
2.
The higher order Euler numbers and higher order Euler polynomials;
高阶Euler数和高阶Euler多项式
3.
In this paper, the relations between Bernoulli-Euler numbers and between Bernoulli-Euler polynomials are find, the results of related literature are deepen and reinforce.
本文给出了 Bernoulli- Euler数之间的关系和 Bernoulli- Euler多项式之间的关系 ,从而深化和补充了有关文献中的相关结果 。
4) Nrlund Euler polynomials
Nrlund Euler多项式
5) higher order Euler polynomials
高阶Euler多项式
1.
The higher order Euler numbers and higher order Euler polynomials;
高阶Euler数和高阶Euler多项式
2.
Using the method of generating function,short computational formulas of higher order Bernoulli polynomials and higher order Euler polynomials are given by two Stirling numbers of the first kind.
使用发生函数方法,利用两种第一类Stirling数给出高阶Bernoulli多项式和高阶Euler多项式的简捷计算公式。
3.
In this paper, A new kind of computational formulas of higher order Euler polynomials and higher order Bernoulli polynomials are given by using Stirling number, these formulas have a good structure and are easy to apply.
利用Stirling数给出高阶Euler多项式和高阶Bernoulli多项式的一类新的计算公式,这些公式结构精美,便于应用。
6) higher order Apostol-Euler polynomials
高阶Apostol-Euler多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
补充资料:Euler多项式
Euler多项式
Eider polynomials
D山牙多项式【D‘留洲咖田血面:,曲几epa MHoro,月e.“] 形如 一,、声fn1E‘「门卜, 丑‘幼=)』!!屯手lx一份l 饰~局Lk」2“L一2」的多项式,其中风为D心留数(E任坛rnl匹n1比rs).E枉晓r多项式可按下列公式依次计算: 二(x)十夕「“1E-(x)一:、. S=0 Ls」特别是, 、(x)一,,马(x)一,一告,、(x)一二。一l)·EUler多项式满足微分方程 氏(x+l)十凡(x)=2妙,并属于A即dl多项式(APpell polynomials)类,即满足关系式 d~,、~ 云尺(x)一峨一,(x).E认贻r多项式的母函数是 Zexr界及(x) 己‘+l浓写〕月!E吐贻r多项式具有Four七r展开式 _、n!杀c《粥「‘从+l飞冗x+(n+l、耐21 人‘X、=-‘于一夕一二二二上二二二共尖二.共一谷祥一二“二‘卫_t*〕 兀’一‘诬劝叹水十i厂- 0簇x(l,n)L当”为奇数时,B众r多项式满足关系式 式(1一x)=(一l)”瓦(x), 二,、一。,丫‘一l、*。[二十上1: “一“一Lm」当n为偶数时,则满足关系式一、2m·喇‘、。_「、kl 瓦(mx)一俄了高‘一‘)“沙十言」,其中凡十,是.欲以面多项式(氏“幻词山训琢幻代山山)·与(*)的右端重合的周期函数是K叨M份明阵.不等式(Koln刃即rovh闰珑山ty)和其他一些函数论的极值问题中的极值函数.广义B亚r函数也已被研究.【补注】此外,E任贻r多项式还满足等式 氏(x+h)= _、.「。飞,_、二「。1,._._,、._,、一乓(x)十Ll」”尺一(x)十”‘十卜兰1J“”一‘尽(x)十几(x),可用符号简写为 乓(x+h)={E(x)+h}”·此式右端应读作:首先把右端展开为表达式(梦){E冈y尸一’之和,然后用双(x)代替{E(x)}‘· 采用同样的符号表示法,对每个多项式P(x),有 p(E(x)+l)+p(E(x))=2P(x). 张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条