说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高阶Apostol-Euler数和多项式
1)  Apostol-Euler numbers and polynomials of higher order
高阶Apostol-Euler数和多项式
2)  higher order Apostol-Euler polynomials
高阶Apostol-Euler多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
3)  Apostol-Euler numbers and polynomials
Apostol-Euler数和多项式
1.
The purpose of this paper is to give an analogous definition of Apostol type for the so-called Apostol-Euler numbers and polynomials.
的思想将 Euler数和多项式作了推广 (称之为 Apostol-Euler数和多项式 ) ,得到了 Apostol-Euler数和多项式分别用第二类 Stirling数和 Gauss超几何函数表示的公式 ,最后给出了它们的一些相应的特殊情况和应
4)  Apostol-Euler numbers of higher order
高阶Apostol-Euler数
5)  Euler numbers and polynomials of higher order
高阶Euler数和多项式
6)  higher order Apostol-Bernoulli polynomials
高阶Apostol-Bernoulli多项式
1.
In this paper,the definition of the higher order Apostol-Euler polynomials and the higher order Apostol-Bernoulli polynomials is created.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式,推广了文献[5-6]的结果。
2.
By using the method of generating function and the technique of calculating,several identity involving higher order Apostol-Bernoulli polynomials and stirling numbers are established,and computational formulas of higher order Apostol-Bernoulli polynomials and high order Apostol-Bernoulli numbers are given.
使用发生函数方法和计算技巧,建立起高阶Apostol-Bernoulli多项式与第1类Stirling数之间的恒等式,得到关于高阶Apostol-Bernoulli多项式、高阶Apostol-Bernoulli数等的计算公式。
补充资料:Euler多项式


Euler多项式
Eider polynomials

D山牙多项式【D‘留洲咖田血面:,曲几epa MHoro,月e.“] 形如 一,、声fn1E‘「门卜, 丑‘幼=)』!!屯手lx一份l 饰~局Lk」2“L一2」的多项式,其中风为D心留数(E任坛rnl匹n1比rs).E枉晓r多项式可按下列公式依次计算: 二(x)十夕「“1E-(x)一:、. S=0 Ls」特别是, 、(x)一,,马(x)一,一告,、(x)一二。一l)·EUler多项式满足微分方程 氏(x+l)十凡(x)=2妙,并属于A即dl多项式(APpell polynomials)类,即满足关系式 d~,、~ 云尺(x)一峨一,(x).E认贻r多项式的母函数是 Zexr界及(x) 己‘+l浓写〕月!E吐贻r多项式具有Four七r展开式 _、n!杀c《粥「‘从+l飞冗x+(n+l、耐21 人‘X、=-‘于一夕一二二二上二二二共尖二.共一谷祥一二“二‘卫_t*〕 兀’一‘诬劝叹水十i厂- 0簇x(l,n)L当”为奇数时,B众r多项式满足关系式 式(1一x)=(一l)”瓦(x), 二,、一。,丫‘一l、*。[二十上1: “一“一Lm」当n为偶数时,则满足关系式一、2m·喇‘、。_「、kl 瓦(mx)一俄了高‘一‘)“沙十言」,其中凡十,是.欲以面多项式(氏“幻词山训琢幻代山山)·与(*)的右端重合的周期函数是K叨M份明阵.不等式(Koln刃即rovh闰珑山ty)和其他一些函数论的极值问题中的极值函数.广义B亚r函数也已被研究.【补注】此外,E任贻r多项式还满足等式 氏(x+h)= _、.「。飞,_、二「。1,._._,、._,、一乓(x)十Ll」”尺一(x)十”‘十卜兰1J“”一‘尽(x)十几(x),可用符号简写为 乓(x+h)={E(x)+h}”·此式右端应读作:首先把右端展开为表达式(梦){E冈y尸一’之和,然后用双(x)代替{E(x)}‘· 采用同样的符号表示法,对每个多项式P(x),有 p(E(x)+l)+p(E(x))=2P(x). 张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条