说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 四次代数曲线解
1)  Four algebraic curve solution
四次代数曲线解
2)  cubic algebric curve solution
三次代数曲线解
1.
In this paper,nonexistence of limit cycle for the c ubic system in plane with two cubic algebric curve solutions y2=(ax3+bx)2 was proved by qualitative analysis method,however,the singular closed orbit can exist in some cases.
用定性分析的方法,证明了具有两条三次代数曲线解y2=(ax3+bx)2的平面三次系统无极限环,但可以有奇闭轨。
3)  quartic curve solution
四次曲线解
1.
In this paper,it is shown that the Kolmogorov cubic system with degenerate quartic curve solution [y-(x-1)~2]~2=0, may have limit cycles,and a concrete example is given.
证明了具有退化四次曲线解[y-(x-1)~2]~2=0的Kolmogorov三次系统是可以存在极限环的。
4)  quartic invariant algebraic curve
四次不变代数曲线
1.
The present paper is devoted to classifying topologically to the quartic invariant algebraic curves in qudratic system,some corresponding conditions that the connected component of the quartic curve will be a homoclinic cycle of the system have been brought forward.
本文对一类二次系统的四次不变代数曲线进行拓扑分类,并提出各曲线的紧分支能构成相应同宿环的充要条件,全文共分为三章。
5)  algebraic curve solution
代数曲线解
1.
By means of the sufficient and necessary condition of the second order polynomial system s integrability and the division theorem of polynomial functions in two variables in the complex domain, we obtain some criterion for the non_existence of Brusselator equation algebraic curve solution.
依据管克英、雷锦志在IntegrabilityofSecondOrderAutonomousSystem一文中给出的二阶多项式自治系统可积的充要条件,通过复域上二元多项式函数整除定理,判定了Brussela tor方程不存在代数曲线解。
2.
By division theorem of polynomial functions, we prove strictly that the travelling solution equation of Burgers_KdV equation has the algebraic curve solution if and only if parametres satisfy the special relation.
利用整除定理严格论证了在参数满足特殊关系时Burgers_KdV行波解方程才存在代数曲线解,并且仅在此参数关系下方程是Liouville可积的。
6)  algebraic solution curves
代数解曲线
补充资料:Hesse曲线(代数曲线的)


Hesse曲线(代数曲线的)
Hessian (algebraic curve)

  11油限曲线(代数曲线的)【H台自11(.妙如允.抖e);recc咖,T~aaa,即r药pa一吸ee二o‘二p.助蓝] n次代数曲线(司罗玩水c~)的He丈祀曲线就是其极二次曲线能分裂为两条直线的点的集合,也是第一极曲线的二重点构成的集合.n次非奇异曲线的He丈七曲线是一条次数为3伪一2)、类为3(n一2)(3n一7)的曲线.设介O是这条n次曲线的齐次坐标方程,关丘=刁:f/刁xi刁、,则它的He丈犯曲线的定义方程为 !不:关:五,} }五:关:五31=0. }人,人2人3}特征不等于3时的三次非奇异曲线的H既七曲线与这条曲线交于9个通常拐点.因O.H改e(l 844)而得名. A .E.H困阳。B撰
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条