1) Quartic curve
四次曲线
2) quartic Bèzier curve
四次Bèzier曲线
1.
Extension of the quartic Bèzier curve with parameters;
文章给出了一组含有3个参数λ、μ、ν的五次多项式基函数,是四次Bernstein基函数的扩展,分析了这组基的性质,基于该组基函数定义了带3个形状参数的多项式曲线;所定义的曲线不仅具有四次Bèzier曲线的特性,而且具有形状的可调性和更好的逼近性,参数λ、μ、ν有明显的几何意义;另外,经典的四次Bèzier曲线和有关文献中的两类曲线均是该文所定义的曲线的特例;实例表明,定义的曲线为曲线/曲面的设计提供了一种有效的方法。
3) quartic curve solution
四次曲线解
1.
In this paper,it is shown that the Kolmogorov cubic system with degenerate quartic curve solution [y-(x-1)~2]~2=0, may have limit cycles,and a concrete example is given.
证明了具有退化四次曲线解[y-(x-1)~2]~2=0的Kolmogorov三次系统是可以存在极限环的。
4) space quadric curve
空间四次曲线
5) modifiable quartic curve
可调控四次曲线
6) quartic B-spline curve
四次B-样条曲线
补充资料:二次曲线
二次曲线 second-degree curve 平面直角坐标系中x,y的二次方程所表示的图形的统称。常见的二次曲线有圆、椭圆、双曲线和抛物线。因为它们可以用不同位置的平面截割直圆锥面而得到(见图),因此又称为圆锥截线。特殊情形时,二次方程可以分解为两个一次方程的乘积,这时,二次曲线就退化为两条直线,或者是两条相交直线,或者是两条平行直线,或者是两条重合直线,也包括两条共轭虚直线或者两条平行虚直线的情形。例如二次方程x2-y2=0就表示两条相交直线x+y=0及x-y=0;x2+y2=0就表示两条共轭虚直线(或说表示一个点)。通过对二次方程进行的讨论,可以将二次曲线分为三大类型:椭圆型,双曲型和抛物型。再细分,即可得上面提到的各种曲线,也包括退化成直线的情形,共有9种。圆作为椭圆的特殊情形包括在椭圆之中,而不单独算一种。通过坐标轴的适当的平移和旋转,可以把任意一个二元二次方程化简,从而区别出它表示9种曲线中的哪一种。也可以通过不变量由二次曲线方程的系数,直接判定它表示的曲线的种类。所谓不变量,是指方程的系数间的一个代数式,它的值不因坐标系的平移和旋转而改变。还可以通过二次曲线的方程,来讨论二次曲线的中心,直径和共轨直径,对称轴及渐近线等有关几何事项。
|
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条