1) Extreme problems in surveying
测量极值问题
2) vector extremum problem
向量极值问题
1.
Optimality condition is established for vector extremum problems with set constraint by applying the alternative theorem under generalized subconvexlike maps in ordered locally-convex Hausdorff spaces.
利用序局部凸Hausdorff空间中的广义次似凸映射下的择一定理,得出带集约束的向量极值问题的最优性条件。
2.
Some properties of these concepts are discussed, ε-Conjugate duality theorems of vector extremum problems are established.
在线性拓扑空间中引入ε-次微分和ε-共轭映射的概念,系统地讨论了它们的若干性质,建立了一般向量极值问题的ε-共轭对偶定理。
3) vector extremum problems
向量极值问题
1.
Benson proper efficient solution for vector extremum problems is the most important aspect of optimization problems,and it has drawn lots of attention.
向量极值问题的Benson真有效解,是优化问题的一个最重要的方面,吸引了许多关注的目光。
2.
Finally, using the theorem, the optimali-ty conditions for the vector extremum problems with generalized equality and inequality constraints are obtained.
并利用此定理获得了带广义等式和不等式约束的向量极值问题的最优性条件。
4) extremal problem
极值问题
1.
We discuss the extremal problem on the fourth type of super-Cartan domain Y_(IV)(N;n;k),obtain the extremal mapping and extremal value between the fourth type of super-Cartan domain and the unit ball.
讨论了第四类超Cartan域Y_(Ⅳ)(N;n;k)上的极值问题,得到了第四类超Car- tan域与单位超球间的极值和极值映照。
2.
In this paper,some extremal problems between the Cartan-Hartogs domain on k<1 and the unit ball are studied,and the extremal mapping and extremal value in explicit formulas are obtained.
本文讨论两种类型的极值问题,其中一种类型的极值问题可以认为是复平面上经典的Schwarz引理在高维的一个推广;另一种类型的极值是某空间上的度量,可以用来考虑域的双全纯等价分类问题。
3.
We revisit the classical extremal problem on Cartan domains.
研究了Cartan域上的极值问题。
5) extremum problem
极值问题
1.
In this paper, extremum problems of generalized polynomials fanctions are discussed.
本文讨论了广义多项式函数的极值问题,给出了这一问题的必要条件和充分条件,介绍了一种求解此类函数极值的实用方法。
2.
In this paper, we consider the extremum problems with cone-convex set-to-setmaps and prove some theorems of the alternative for cone-convex set-to-set maps by meansof Morris sequence.
本文为考虑集值映射的极值问题,提出了锥凸集到集映射的概念,借助Morris序列证明了若干这类映射的择一性定理。
补充资料:极值问题
极值问题
extremal problem
极值I’q题【ext班翻目脚由七n;,二eTpeMa月研a:3a皿a,a」 求函数或泛函的极值的问题,即要根据加在不同种类的(相的,微分的,积分的,等等)泛函或目标函数上的最小值或最大值条件,对参数或者函数(控制)进行选择.亦见变分学(w币atioml司cLilus),数学规划(扣皿址泊祖ti。红prog卫mi刀ing)和最优控制(op-tin迢1 conlrol).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条