说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 向量值边值问题
1)  vector-valued boundary problem
向量值边值问题
1.
In this survey, we will give new results in this direction obtained in the last four years, and its applications in the study of maximal regularity in the Lp sense for vector-valued boundary problems, this include the counter-example given by N.
本文的目的是介绍算子值傅里叶乘子的这些最新进展, 以及它们在向量值边值问题最大正则性方面的应用。
2)  vector boundary value problem
向量边值问题
3)  boundary value problem
边值问题
1.
Existence of solution of boundary value problems with p-Laplace operator;
具p-Laplace算子型边值问题解的存在性
2.
Existence of three positive solutions in boundary value problems of a class of second order ordinary differential systems;
一类二阶常微分方程组边值问题三个正解的存在性
3.
Solutions to m-point boundary value problems of higher order ODES at resonance;
具共振条件高阶微分方程多点边值问题的解(英文)
4)  boundary-value problem
边值问题
1.
Existence of convex solutions for boundary-value problem of dynamic equations on time scales;
测度链上动力方程边值问题凸解的存在性
2.
Multiple solution of some boundary-value problems of n-order difference equation;
一类n阶差分方程边值问题的多解性
3.
Numerical solution of second order singular-perturbed boundary-value problems;
一类二阶奇异摄动边值问题的数值解法
5)  boundary problem
边值问题
1.
Methods and particulars for solving boundary problem of electromagnetic field;
电磁场边值问题的解法及其特点
2.
By solving the one type boundary problems of partial equation, the computing formulae for stress fields of mode I, mode Ⅱ and mixed mode crack tips were derived.
通过求解一类线性偏微分方程的边值问题推出了Ⅰ型、Ⅱ型和混合型裂纹尖端附近的应力场的计算公式。
3.
This turns the second-class boundary problem into a first class one and, makes the solving process much easy.
计算轴对称场的涡流 ,用数值方法求解贝塞尔方程·利用相量法将分析静态场的有限差分法用于分析正弦稳态场 ;将求解电场强度的微分方程变为求解磁场强度的微分方程 ,使得第二类边值问题变为第一类边值问题·用磁场强度的旋度求得电场强度 ,再由电场强度求得电流密度·用来计算油井套管的涡流 ,计算结果与实验结果相符
6)  boundary value problems
边值问题
1.
On the existence of solutions of boundary value problems for fourth-orderdifferential equations;
一类四阶微分方程边值问题解的存在性
2.
Existence of solution for nonlinear two-point boundary value problems with one-dimensional p-Laplacian operator;
含有一维p-Laplacian算子的非线性两点边值问题的可解性
3.
Virtual boundary element least square method for solving boundary value problems of elliptic partial differential equations;
求解椭圆型微分方程边值问题的虚边界元-最小二乘法
补充资料:解析函数边值问题
      寻求满足一定边界条件的解析函数的一类问题,这是解析函数论在许多理论和实际问题中应用极为广泛的一个重要分支。下面是两个最典型的例子。
  
  黎曼边值问题 设l为复平面上一组有向的光滑曲线,把平面分割为若干个连通区域,要求一分区全纯函数(即在上述每一个连通区域内全纯)φ(z)使,
    (1)式中G(t),g(t)都是已知函数,而φ +(t)和φ -(t)分别表示当z从l的正侧(即沿l正向前进时的左侧)和负侧(右侧)趋于l上一点时φ(z)的极限值亦即边值。此外还应补充要求φ(z)在无穷远处至多有一极点。如果l中含有开口弧段,则也应说明要求φ(z)在l的端点附近的性态:具有不到一阶的奇异性。在G(t),g(t)满足一定的条件时,这一问题已完全解决。
  
  希尔伯特边值问题  设G为一区域,l为其边界,取其正向使G在其左侧,要求在G内的一全纯函数φ(z),使 (2)式中α(t),b(t),с(t)都是l上已给的实函数。特别,当α(t)=1,b(t)=0时,则此希尔伯特边值问题就是解析函数的狄利克雷问题。当α(t),b(t),с(t)满足一定的条件时,上述边值问题已有较完整的讨论,但对G为多连通区域的情况还不能说已完全彻底解决。
  
  有人把黎曼边值问题称作希尔伯特边值问题,而把希尔伯特边值问题称作黎曼-希尔伯特边值问题。这两个问题是有密切联系的,求解它们的主要工具都是柯西型积分。
  
  进一步推广是在(1)或(2)中可以含有或者含有φ +(α(t)),φ -(α(t)),其中α(t)为l映于自身的一个同胚映射,保向或逆向,称为l的位移。这样,相应的问题就称为带共轭的或带位移的边值问题,当然也有既带共轭又带位移的边值问题。
  
  如果把(1)或(2)中的φ(z)看作N维分区全纯向量,而把G(t),α(t),b(t)看作N×N矩阵,g(t),с(t)也看作N维向量,则就构成了分区全纯向量的边值问题。这类问题虽也有许多工作,但与N=1的情况相比较,还远远没有达到完善的地步。
  
  由于解析函数概念可推广为广义解析函数(基于把解析函数的实部、虚部所满足的柯西-黎曼方程组推广为较一般的一阶偏微分方程组),因此解析函数边值问题也可推广为广义解析函数边值问题,这是把函数论与偏微分方程结合起来的一个方向。
  
  解析函数边值问题和广义解析函数边值问题在奇异积分方程方面有广泛的应用,它们在弹性力学、流体力学方面也有重要的应用。这些方面的理论及其应用,主要是由苏联学者建立和发展起来的。自20世纪60年代以来,中国的数学工作者在这些方面也做了不少工作。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条