1) non-compact graduation
非紧致度
2) total continuity functor
Kuratowskii非紧致测度
3) kuratowskis measures of noncompactness
kuratowski非紧致测度
4) Non-compact flow
非紧致流
1.
Non-compact flow is a special flow that exists in non-compact metric space.
非紧致流是存在于非紧致度量空间上的一类特殊的流,本文通过悬撑的概念提出一种由离散流构造连续非紧致流的方法。
2.
According to the concept of topological chain recurrent ,a special flow “non-compact flow” is introduced on metric space, some properties and examples of this flow are given.
通过拓扑链回归概念,在非紧致度量空间中引入一类特殊的流———非紧致流,同时给出该类流的一些特性和实例。
5) clustering compactness
聚类紧致度
6) measure of noncompactness
非紧测度
1.
Let γ denote the Kuratowski measure or ball measure of noncompactness.
设G是具有正则Borel测度μ的局部紧Hausdorff空间,X是一Banach空间,γ记非紧测度。
2.
Using a special measure of noncompactness,this paper studies the quadratic integral equationx(t)=h(t)+f(t,x(t)) integral from n=0 to 1k(t,s,x(s))dsand it proves that the equation has a nondecreasing solution x(t)∈C(I).
利用一种特殊的非紧测度,证明二次积分方程x(t)=h(t)+f(t,x(t)) integral from n=0 to 1 k(t,s,x(s))ds t∈I=[0,1]在C(I)上有单调递增的连续解。
3.
By using the method of the fixed point and the measure of noncompactness,the existence of mild solutions without the compactness of semigroup can be got and special cases as f is completely continuous and Lipschitz continuous can also be tackled,which are more extensive and general results.
讨论了Banach空间中非局部条件下半线性微分方程的适度解的存在性,利用不动点和非紧测度的方法,给出了在不需要半群紧性条件下方程适度解的存在性,并且对f是连续紧算子和f是Lipschitz连续的情形做了统一处理,从而得到了更为广泛和一般性的结果。
补充资料:致度
1.谓神采风度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条