1) prox regular
邻近正则性
1.
The monotonicity, in some meaning, of subdifferential of prox regular functions and the relationships between prox regular of function and its epigraph are studied in this paper.
研究了函数和集在某点的邻近正则性与次微分连续性,给出邻近正则函数的次微分在某种意义下的单调性及函数的邻近正则性与其上图的邻近正则性的关系。
2) Principle of Proximity
邻近性原则
1.
Principle of Proximity in language understanding;
语言理解中的邻近性原则
3) Asymptotic regularity
渐近正则性
4) locality-aware
邻近原则
1.
Experimental study on locality-aware application layer multicast;
基于邻近原则的应用层组播实验研究
2.
A locality-aware hierarchical tree is constructed to implement monitoring information s collecting and merging,which has high scalability and causes low network overheads.
本文设计了一个用于实时流媒体服务的监控系统,它采用邻近原则构建一个控制层次树对监控数据进行分散采集、逐层汇总,具有扩展性能好、网络开销小等特点,并实现了对Anysee++系统的监控。
3.
The main idea of this protocol is to self-organize the end hosts into a locality-aware overlay multicast tree based on their network position coordinates.
提出了一种基于邻近原则的用于视频流直播服务的应用层多播协议。
5) near-neighborhood criteria
近邻准则
1.
The method realizes classification of fault by near-neighborhood criteria of pattern recognition and cellular ant algorithm.
该方法利用模式识别中的近邻准则,使用元胞蚂蚁算法实现故障的分类,达到故障诊断的目的。
6) k neighboring law
邻近法则
补充资料:非正则性指标
非正则性指标
irrequiarity indices
兄,(一A‘)“又,(A),i=l,…,n.结果,对于Ha而ton系统的变分方程组,其正则性的必要和充分条件是 又,(A)=一又。十:_:(A),i=1,…,k(nePc职cK戚定理(h巧ids幼此0众沈n)). 其他非正则指标,见〔4]一「61.非正MIJ性指标[加明呻‘钾加血es;“eopa。。月研oeTu幼冲枷职e盯叫,线性常微分方程组的 在每个有限区间上可积的映射A:R十~Hom(R月,R”)(或R+~Hom(C门,C月))构成的空间上的非负函数,,使得。(A)等于零的必要和充分条件是方程组 交=A(t)x(*)为正则线性方程组(川刻盯址眨甘system). 最熟知(且最容易定义)的非正则性指标如下所述. l)瓜nyHoB非正则性指标(卜姆pUnov近叫汕州ty访dex)(11」): 气(‘)一‘氨(‘,:甄封仃“·,“一其中又*(A)是方程组(,)的几,nyHoB特征指数(L界Punov cha皿cteristic exponent),按降阶排列,而trA(t)是映射A(t)的迹. 2) PerID幻非正则性指标(RnUn谊闪画州ty)([21): “,(A)一1黔(又,(A)+‘一(一A’)),其中A‘(t)是A(t)的伴随映射.如果系统(*)是H肚ai地刀系统(H盯间to币ansysteln) aH_一, 4=气等,尸。R·, ,aP’‘ 刁H_一。 户二一书于,qoR·, r日q则n二2丸,而
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条