1) Graded injective module
分次内射模
1.
Graded injective module is one of three modules in graded category of modules.
分次内射模是分次模范畴三大模类之一,本文对分次内射模的性质作了一些研究,得到了它的一些等价刻划,并给出了分次内射模与内射模之间的一个关系。
2) graded M-injective modules
分次M-内射模
1.
Introduces and characterizes graded M-injective modules and graded V-modules,Obtains many interested properties.
引进并刻划了分次M-内射模及分次V-模,得到许多有意义的性质。
3) graded quasi injective modules
分次quasi-内射模
4) graded left p-injective modules
分次p-内射模
5) subinjective modules
次内射模
1.
This paper introduces the concept of subinjective dimension and obtains the nature of subinjective modules.
引进次内射维数的概念,给出次内射模的一些性质,并用次内射模及维数刻划了次半单环、Noether环及遗传环的性质。
6) graded projective module
分次投射模
补充资料:内射模
内射模
infective module
【补注】一个环称为右遗传的(石乡the耐ita卿),是指其每个右理想是投射的,或等价地,它的右整体维数(1.如果每个有限生成的右理想为投射的,则称为半右遗传的(se而为启bt he初众a酬).交换遗传整环是l头妇-ekind环;交换半遗传整环称为Prij北r环(Prij此r nng).右遗传环不一定也是左遗传的(lefthe同itary).内射模沙水团花皿汕山;H肠eKrll.皿‘MO八y,‘] 在一个有单位元的结合环R上(右)模范畴中的内射对象,即一R模E,使得对任何R模M,N及任一单一同态i:N~M以及任一同态f:N~E,存在一同态g:M~E使下图交换: 万-与M 谁厂此处及后面所有的R模都假定是右R模.对于R模E,下面条件与内射性等价:1)对任一正合序列(exaCtse甲工侧笼): 0~N~M~L~0诱导列0一Hom:(N,E)~Hom,(M,E)~Hom:(L,E)~0是正合的;2)任何R模正合序列 。~E二M卫L~0是分裂的,即子模Iin“=Ker刀是M的直和分量;3)对所有R模C,Ext二(C,E)二0:4)对任一R的右理想I,R模同态f:I~E可以扩充为R模同态g:R~E(Baer准则(Baercriterion)).在R模范畴中有“足够多”的内射对象:每个R模M可嵌人到一内射模中,进一步,每个模有一个内射包(injecti说h团)E(M),即包有M的内射模,且E(M)的每个非零子模与M的交非空.任一模M到内射模E的嵌人可以扩张为E(M)到E中的嵌人.每个R模M有内射分解(inj。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条