1) Positive semidefinite Hermitian matrix
半正定Hermitian矩阵
2) Hermitian positive definite matrix
Hermitian正定矩阵
1.
Furthermore, a new estimation of the lower bound of the determinant module on the Hadamard product of a Hermitian positive definite matrix and a quasi-generalized complex positive definite matrix is obtained by using the improvement and the properties of quasi-generalized complex positive definite matrices.
首先改进了关于Hermitian正定矩阵的Hadamard乘积的行列式的下界估计的经典的Oppenheim不等式的加强形式,然后应用这个结论和拟复广义正定矩阵的性质,得到了Hermitian正定矩阵和拟复广义正定阵的Hadamard乘积的行列式的模的新下界估计。
2.
Theorefore, we obtain the necessary and sufficient conditions under which the relative gain array of Hermitian positive definite matrix becomes identity matrix.
给出了Hermitian正定矩阵的Hadamard乘积的Fiedler矩阵不等式和Bapat-Kwong矩阵不等式的等式条件,作为所得结果的应用,得到了Hermitian正定矩阵的相对增益阵列是单位矩阵的充分必要条件。
3) singular Hermitian positive semidefinite matrix
奇异Hermitian正半定矩阵
4) positive semidefinite matrix
半正定矩阵
1.
We first discuss the connections between Euclidian distance matrix and positive semidefinite matrix under the condition that Ax 0=λx 0, λ≥0, x 0=en, A n×n is a positive semidefinite matrix.
本文从半正定矩阵An×n满足Ax0=λx0,λ≥0,x0=e/n这个条件出发,讨论了欧几里得距离矩阵与半正定矩阵的关系,给出了判别一个欧几里得距离矩阵的充要条
2.
This paper is concerned with the problem of real symmetric positive semidefinite matrix pencil under spectral restriction.
本文讨论谱约束下实对称半正定矩阵束的最佳逼近问题,指出一般算法。
3.
There exist great differences between positive semidefinite matrix and positive definite matrixin the inequality research.
半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用Moore Penrose逆来代替一般的逆。
6) positive semi-definite matrices
半正定矩阵
1.
Applying these results, the inequality of Khatri-Rao product about positive semi-definite matrices is generalized to real symmetric matrices, and its inverse inequality and equational condition are also given.
应用这些结果,把一个半正定矩阵Khatri-Rao乘积的不等式推广到实对称矩阵,并给出了它的逆向不等式及其等式条件。
2.
Furthermore,theorem 2 gives and proves a suficient and necessary conditionan for the case of positive semi-definite matrices B by the method of matrices decomposition and block matrice.
给定半正定矩阵B,考虑矩阵可交换问题A惨BA=ABA惨的可解性。
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条