1) positive semidefinite complex matrix
复半正定矩阵
2) complex metapositive semidefinite matrix
复亚半正定矩阵
1.
The concept of complex metapositive semidefinite matrix is given, its properties and determinant theories are discussed, and then the Schur theorem, Hua Luo-geng theorem, Minkowski inequality, Protruding property inequality and Ostrowski-Taussky inequality of Hermite matrices are generalized to more extensive compound matrix genus.
给出了复亚半正定矩阵的概念,研究了它的基本性质及行列式理论,将Hermite阵的Schur定理华罗庚定理Minkowski不等式凸性不等式Ostrowski-Taussky不等式推广到了较广泛的复矩阵类,扩大了Minkowski不等式的指数范围,削弱了华罗庚不等式的条件。
3) complex positive semi-definite matrix
半正定复矩阵
1.
Properties of complex positive semi-definite matrix, k-step principle minor matrix, Kronecker product and Hadamard product are studied.
讨论了半正定复矩阵的性质和半正定复矩阵的k阶主子阵、Kronecker积和Hadamard积的性质 ,给出半正定复矩阵特征值的估
4) Complex positive semi definite matrix
复正半定矩阵
5) positive semidefinite matrix
半正定矩阵
1.
We first discuss the connections between Euclidian distance matrix and positive semidefinite matrix under the condition that Ax 0=λx 0, λ≥0, x 0=en, A n×n is a positive semidefinite matrix.
本文从半正定矩阵An×n满足Ax0=λx0,λ≥0,x0=e/n这个条件出发,讨论了欧几里得距离矩阵与半正定矩阵的关系,给出了判别一个欧几里得距离矩阵的充要条
2.
This paper is concerned with the problem of real symmetric positive semidefinite matrix pencil under spectral restriction.
本文讨论谱约束下实对称半正定矩阵束的最佳逼近问题,指出一般算法。
3.
There exist great differences between positive semidefinite matrix and positive definite matrixin the inequality research.
半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用Moore Penrose逆来代替一般的逆。
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条