1) skew-Hermitian
skew-Hermitian矩阵
3) Hermitian-Hamilton matrix
Hermitian Hamilton矩阵
1.
Let J=OI_n-I_nO be a unit symplectic matrix,A∈C~(2n×2n) is called to be a Hermitian-Hamilton matrix if A~H=A and (JA)~H=JA,the set of all 2n×2n Hermitian-Hamilton matrices is denoted by HHC~(2n×2n).
OIn-InO是单位辛矩阵,若A∈C2n×2n满足AH=A,(JA)H=JA,则称A为Hermitian Hamilton矩阵,所有2n×2n阶Hermitian Hamilton矩阵的全体记为HHC2n×2n。
5) Skew symmetrical matrix
Skew对称矩阵
6) Hermitian positive definite matrix
Hermitian正定矩阵
1.
Furthermore, a new estimation of the lower bound of the determinant module on the Hadamard product of a Hermitian positive definite matrix and a quasi-generalized complex positive definite matrix is obtained by using the improvement and the properties of quasi-generalized complex positive definite matrices.
首先改进了关于Hermitian正定矩阵的Hadamard乘积的行列式的下界估计的经典的Oppenheim不等式的加强形式,然后应用这个结论和拟复广义正定矩阵的性质,得到了Hermitian正定矩阵和拟复广义正定阵的Hadamard乘积的行列式的模的新下界估计。
2.
Theorefore, we obtain the necessary and sufficient conditions under which the relative gain array of Hermitian positive definite matrix becomes identity matrix.
给出了Hermitian正定矩阵的Hadamard乘积的Fiedler矩阵不等式和Bapat-Kwong矩阵不等式的等式条件,作为所得结果的应用,得到了Hermitian正定矩阵的相对增益阵列是单位矩阵的充分必要条件。
补充资料:skew boat conformation
分子式:
CAS号:
性质:六元环化合物的不稳定的,呈扭曲状的船式构象。其稳定性介于椅式和船式构象之间。
CAS号:
性质:六元环化合物的不稳定的,呈扭曲状的船式构象。其稳定性介于椅式和船式构象之间。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条