1) bicrossed coproducts
双交叉余积
2) crossed coproduct bialgebra
交叉余积双代数
1.
The object of this paper is to generalize Molnar s smash coproduct bialgebra to crossed coproduct bialgebra.
将Molnar的半直余积双代数推广到交叉余积双代数,得到交叉余积双代数实现的充要条件,并研究了交叉余积Hopf代数实现的条件。
3) crossed coproduct
交叉余积
1.
We show that C is a crossed coproduct if and only if C_R is free.
如果C/R是M Galois余扩张且R及R H 关于内射余模满足Krull schmidt性质 ,我们证明了C是交叉余积的主要条件是CR 为自由余模。
2.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
3.
By using method of twisted module coalgebras, this paper shows that there are correspondings between the crossed coproducts C× α H and twisted tensor coalgebras ( CH) τ .
设 H 为 k 双代数 ,证明了交叉余积 C×|αH 与扭张量余代数 ( C H) τ存在一一对
4) crossed biproduct
交叉双积
1.
Moreover we give some characterizations for crossed biproducts.
提出了双代数上的余模余代数的内余作用和交叉双积的概念 ,给出了交叉余积的一些性质及由内余作用诱导的交叉余积的构造方法 ,还给出了交叉双积的一些性质。
5) bicrossed product
双交叉积
1.
This note begins with necessary and sufficient conditions for the smash product algebra A#H to be a bialgebra with a quotient bialgebra H and a weak injection from H to A#H , and points out this structure includes biproduct, bicrossed product and bicrossed coproduct as special cases by restricting maps α, β, γ or Δ A to some special maps.
对此取特殊同态 ,证明此种构造推广了双积、双交叉积和双交叉余积等结构 ,有较广的覆盖面 。
2.
This paper discussed the foundation of bicrossed products with inner action and inner coaction, investigated the conditions of a bicrossed product being to a bismash product, and proved that bismash product is isomophic to Hopf algebra HA.
本文通过双交叉积Hβ[φ]α[x]A的构造,给出双交叉积成为双Smash积的条件。
3.
The purpose of this paper is to begin to lay the foundation of bicrossed products of Hopf algebra.
本文定义并详细讨论了交叉余积,考虑交叉积与交叉余积合起未成为双代数的问题,讨论了由内作用,内余作用构造的双交叉积。
6) Crossed coproduct coalgebra
交叉余积余代数
补充资料:交叉双液压回路制动系统
交叉双液压回路制动系统是液压制动系1、2回路各由一侧的前轮制动器与对角的后轮制动器组成。当任一条回路失效时,另一个回路仍可保证车辆前后左右均有制动力,因此可以保持一定的转向能力和抗侧滑能力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条