1) cross-convolution
交叉褶积
2) crossed product
交叉积
1.
On Semidirect Product of Discrete Groups and Crossed Product of von Neumann Algebras;
关于离散群的半直积与von Neumann代数的交叉积
2.
Thenβ_h=α_(e,h) AdU_h is an action of H on the von Neumann algebra crossed product M■_αG.
设α是可数离散群G和H的半直积G■_σH在冯·诺依曼代数M上的作用,则β_h=α_((e,h))AdU_h定义了群H在冯·诺依曼代数交叉积M■_αG上的作用β。
3.
In this paper,crossed products and orders are discussed.
研究了交叉积R*G和次环,证明了R*G是半素G o ld ie环当且仅当R是半素G o ld ie环。
3) cross-product term
交叉积项
1.
We study the thermal entanglement in the two-qubit Heisenberg XY model including the cross-product terms in the presence of an external inhomogeneous magnetic field.
研究外加非均匀磁场下包含交叉积项的两量子比特海森堡XY模型中的热纠缠,计算了纠缠度量:C。
4) crossed coproduct
交叉余积
1.
We show that C is a crossed coproduct if and only if C_R is free.
如果C/R是M Galois余扩张且R及R H 关于内射余模满足Krull schmidt性质 ,我们证明了C是交叉余积的主要条件是CR 为自由余模。
2.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
3.
By using method of twisted module coalgebras, this paper shows that there are correspondings between the crossed coproducts C× α H and twisted tensor coalgebras ( CH) τ .
设 H 为 k 双代数 ,证明了交叉余积 C×|αH 与扭张量余代数 ( C H) τ存在一一对
5) crossed biproduct
交叉双积
1.
Moreover we give some characterizations for crossed biproducts.
提出了双代数上的余模余代数的内余作用和交叉双积的概念 ,给出了交叉余积的一些性质及由内余作用诱导的交叉余积的构造方法 ,还给出了交叉双积的一些性质。
6) Double crossed product
偶交叉积
补充资料:循环褶积
两个给定的序列分别延拓为周期性序列后,按周期褶积原理对其进行运算,结果也是一个周期性序列。如果仅取其一个周期内的结果,就得到循环褶积的序列。设有两个长度均为N的序列x(n)和h(n)进行褶积,先将它们经周期延拓变为周期序列慜(n)和愢(n),即
慜(n+kN)=慜(n) 愢(n+kN)=愢(n) 0≤n≤N
式中k为任意整数,序列x(n)和h(n)可以分别看作周期序列慜(n)和愢(n)在一个周期内的主值序列。
x(n)和h(n)的循环褶积定义为
y(n)=x(n)n(n)=x(l)n(n-l)NRN(n)
n=0,1,2,...,N-1
其中RN(n)是矩形序列
RN(n)=
nN是余数运算表达式,它表示n对N 求余数。
循环褶积的计算过程 现举例说明循环褶积的计算过程。例如,两个有限长度序列同为矩形序列
x(n)=n(n)=
这两个矩形序列的N点循环褶积见图。这个褶积过程可以理解为序列x(n)分布在N等分的圆筒壁上,而序列h(n)经卷褶后也分布在另一个N等分的同心圆筒壁上,每当两个圆筒停在一定的相对位置时,两个序列相乘求和即得褶积序列中的一个值。然后将一个圆筒相对于另一个圆筒旋转移位,依次在不同位置下相乘求和,就得到全部褶积序列。由于序列h(n)是等值的,所以x(n)旋转时,乘积x(l)h(n-l)的和总是等于N。
如果两个序列x(n)和h(n)的长度分别为N和M,设x(n)代表信号序列,h(n)代表线性系统的冲激响应序列,则要求系统输出是线性褶积
y(n)=x(n)*h(n)为了从它们的循环褶积得到线性褶积而不发生序列交叠的混淆现象,要将两序列的长度各扩长为L≥+N-1,即x(n)只有前N个非零值,后L-N个均为补充的零值;而h(n)只有前M个是非零值,后L-M个均为补充的零值。由此求循环褶积,其结果就等于两序列的线性褶积。
用快速傅里叶变换计算循环褶积,当N 较大时,直接计算循环褶积的运算量相当大。因此,有必要寻求简便、快速计算循环褶积的变换方法。为此,所用变换的快速结构必须具有若干良好的性质。
①循环褶积性,即两个序列的循环褶积的变换等于它们各自变换的乘积;
②变换是可逆的;
③变换是线性的。满足上述性质的变换方法有傅里叶变换、数论变换等。
当采用快速傅里叶变换(FFT)技术求解褶积时,两个时域序列的循环褶积的离散傅里叶变换 (DFT)等于它们的离散傅里叶变换之乘积,即
Y(k)=DFT[x(n)n(n)]=X(k)H(k)
对Y(k)求离散傅里叶反变换(IDFT),即可得到两个序列的循环褶积
y(n)=IDFT[Y(k)]
由上述计算过程可看出,直接褶积所需乘法运算次数为N2,利用FFT算法计算循环褶积共需要三次FFT运算(计算IDFT所需乘法次数与计算DFT的相同)与N 次乘法,总共需要乘法次数为
所以,N 越长,利用快速变换算法计算循环褶积的优越性越大。通常将循环褶积也称为快速褶积。
参考书目
何振亚著:《数字信号处理的理论与应用》上册,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice Hall, Inc., Englewood Cliffs,New Jersey,1975.
慜(n+kN)=慜(n) 愢(n+kN)=愢(n) 0≤n≤N
式中k为任意整数,序列x(n)和h(n)可以分别看作周期序列慜(n)和愢(n)在一个周期内的主值序列。
x(n)和h(n)的循环褶积定义为
y(n)=x(n)n(n)=x(l)n(n-l)NRN(n)
n=0,1,2,...,N-1
其中RN(n)是矩形序列
RN(n)=
nN是余数运算表达式,它表示n对N 求余数。
循环褶积的计算过程 现举例说明循环褶积的计算过程。例如,两个有限长度序列同为矩形序列
x(n)=n(n)=
这两个矩形序列的N点循环褶积见图。这个褶积过程可以理解为序列x(n)分布在N等分的圆筒壁上,而序列h(n)经卷褶后也分布在另一个N等分的同心圆筒壁上,每当两个圆筒停在一定的相对位置时,两个序列相乘求和即得褶积序列中的一个值。然后将一个圆筒相对于另一个圆筒旋转移位,依次在不同位置下相乘求和,就得到全部褶积序列。由于序列h(n)是等值的,所以x(n)旋转时,乘积x(l)h(n-l)的和总是等于N。
如果两个序列x(n)和h(n)的长度分别为N和M,设x(n)代表信号序列,h(n)代表线性系统的冲激响应序列,则要求系统输出是线性褶积
y(n)=x(n)*h(n)为了从它们的循环褶积得到线性褶积而不发生序列交叠的混淆现象,要将两序列的长度各扩长为L≥+N-1,即x(n)只有前N个非零值,后L-N个均为补充的零值;而h(n)只有前M个是非零值,后L-M个均为补充的零值。由此求循环褶积,其结果就等于两序列的线性褶积。
用快速傅里叶变换计算循环褶积,当N 较大时,直接计算循环褶积的运算量相当大。因此,有必要寻求简便、快速计算循环褶积的变换方法。为此,所用变换的快速结构必须具有若干良好的性质。
①循环褶积性,即两个序列的循环褶积的变换等于它们各自变换的乘积;
②变换是可逆的;
③变换是线性的。满足上述性质的变换方法有傅里叶变换、数论变换等。
当采用快速傅里叶变换(FFT)技术求解褶积时,两个时域序列的循环褶积的离散傅里叶变换 (DFT)等于它们的离散傅里叶变换之乘积,即
Y(k)=DFT[x(n)n(n)]=X(k)H(k)
对Y(k)求离散傅里叶反变换(IDFT),即可得到两个序列的循环褶积
y(n)=IDFT[Y(k)]
由上述计算过程可看出,直接褶积所需乘法运算次数为N2,利用FFT算法计算循环褶积共需要三次FFT运算(计算IDFT所需乘法次数与计算DFT的相同)与N 次乘法,总共需要乘法次数为
所以,N 越长,利用快速变换算法计算循环褶积的优越性越大。通常将循环褶积也称为快速褶积。
参考书目
何振亚著:《数字信号处理的理论与应用》上册,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice Hall, Inc., Englewood Cliffs,New Jersey,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条