1) crossed product
交叉积
1.
On Semidirect Product of Discrete Groups and Crossed Product of von Neumann Algebras;
关于离散群的半直积与von Neumann代数的交叉积
2.
Thenβ_h=α_(e,h) AdU_h is an action of H on the von Neumann algebra crossed product M■_αG.
设α是可数离散群G和H的半直积G■_σH在冯·诺依曼代数M上的作用,则β_h=α_((e,h))AdU_h定义了群H在冯·诺依曼代数交叉积M■_αG上的作用β。
3.
In this paper,crossed products and orders are discussed.
研究了交叉积R*G和次环,证明了R*G是半素G o ld ie环当且仅当R是半素G o ld ie环。
2) cross-product term
交叉积项
1.
We study the thermal entanglement in the two-qubit Heisenberg XY model including the cross-product terms in the presence of an external inhomogeneous magnetic field.
研究外加非均匀磁场下包含交叉积项的两量子比特海森堡XY模型中的热纠缠,计算了纠缠度量:C。
3) crossed coproduct
交叉余积
1.
We show that C is a crossed coproduct if and only if C_R is free.
如果C/R是M Galois余扩张且R及R H 关于内射余模满足Krull schmidt性质 ,我们证明了C是交叉余积的主要条件是CR 为自由余模。
2.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
3.
By using method of twisted module coalgebras, this paper shows that there are correspondings between the crossed coproducts C× α H and twisted tensor coalgebras ( CH) τ .
设 H 为 k 双代数 ,证明了交叉余积 C×|αH 与扭张量余代数 ( C H) τ存在一一对
4) crossed biproduct
交叉双积
1.
Moreover we give some characterizations for crossed biproducts.
提出了双代数上的余模余代数的内余作用和交叉双积的概念 ,给出了交叉余积的一些性质及由内余作用诱导的交叉余积的构造方法 ,还给出了交叉双积的一些性质。
5) Double crossed product
偶交叉积
6) bicrossed product
双交叉积
1.
This note begins with necessary and sufficient conditions for the smash product algebra A#H to be a bialgebra with a quotient bialgebra H and a weak injection from H to A#H , and points out this structure includes biproduct, bicrossed product and bicrossed coproduct as special cases by restricting maps α, β, γ or Δ A to some special maps.
对此取特殊同态 ,证明此种构造推广了双积、双交叉积和双交叉余积等结构 ,有较广的覆盖面 。
2.
This paper discussed the foundation of bicrossed products with inner action and inner coaction, investigated the conditions of a bicrossed product being to a bismash product, and proved that bismash product is isomophic to Hopf algebra HA.
本文通过双交叉积Hβ[φ]α[x]A的构造,给出双交叉积成为双Smash积的条件。
3.
The purpose of this paper is to begin to lay the foundation of bicrossed products of Hopf algebra.
本文定义并详细讨论了交叉余积,考虑交叉积与交叉余积合起未成为双代数的问题,讨论了由内作用,内余作用构造的双交叉积。
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条