1) cross stacking
交叉堆积
2) crosswise sloped piling
横向交叉倾斜堆积
3) cross piling
交叉堆垛
4) crossed product
交叉积
1.
On Semidirect Product of Discrete Groups and Crossed Product of von Neumann Algebras;
关于离散群的半直积与von Neumann代数的交叉积
2.
Thenβ_h=α_(e,h) AdU_h is an action of H on the von Neumann algebra crossed product M■_αG.
设α是可数离散群G和H的半直积G■_σH在冯·诺依曼代数M上的作用,则β_h=α_((e,h))AdU_h定义了群H在冯·诺依曼代数交叉积M■_αG上的作用β。
3.
In this paper,crossed products and orders are discussed.
研究了交叉积R*G和次环,证明了R*G是半素G o ld ie环当且仅当R是半素G o ld ie环。
5) cross-product term
交叉积项
1.
We study the thermal entanglement in the two-qubit Heisenberg XY model including the cross-product terms in the presence of an external inhomogeneous magnetic field.
研究外加非均匀磁场下包含交叉积项的两量子比特海森堡XY模型中的热纠缠,计算了纠缠度量:C。
6) crossed coproduct
交叉余积
1.
We show that C is a crossed coproduct if and only if C_R is free.
如果C/R是M Galois余扩张且R及R H 关于内射余模满足Krull schmidt性质 ,我们证明了C是交叉余积的主要条件是CR 为自由余模。
2.
This paper gives a new method to prove the following three statements are equivalent: C/E is an H cleft coextension; C is isomorphic to a Hopf crossed coproduct E× α H with α convolution invertible; C/E is an H Galois coextension with a conormal basis property.
采用一种新方法证明了下述三者是等价的 :C/E是Hcleft余扩张 ;C同构于Hopf交叉余积E×αH且α卷积可逆 ;C/E是HGalois余扩张且具有余正规基性质 。
3.
By using method of twisted module coalgebras, this paper shows that there are correspondings between the crossed coproducts C× α H and twisted tensor coalgebras ( CH) τ .
设 H 为 k 双代数 ,证明了交叉余积 C×|αH 与扭张量余代数 ( C H) τ存在一一对
补充资料:骨盆倾斜度
骨盆倾斜度
妇女站立时骨盆入口平面与地平面的角度,为骨盆倾斜度,此角为60°,详见附图。手握骨盆标本,使其髂前上棘与耻骨结节在同一垂直线上时,即为正常骨盆倾斜的位置。骨盆倾斜度过大,将影响胎头衔接。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条