1) irreducible homogeneous polynomial
不可约齐次多项式
2) Irreducible polynomial
不可约多项式
1.
For a wide range of integers n (n is the product of prime number and prime number or 1),a necessary and sufficient condition is given for a polynomial of degree n over the finite field F_p being an irreducible polynomial or primitive polynomial.
对于一大类整数n(n为素数乘于素数或1的积),分别给出有限域Fp上n次多项式是不可约多项式与本原多项式的一个充要条件,该条件可通过O(n3)次Fp上乘法加以验证,易于硬件实现。
2.
In this paper, we discuss the number of irreducible polynomials over F q of degree m and period l, moreover, we describle a principle of obtaining new irreducible polynomials from known ones.
主要利用较文献 [4]更为简明的方法证明了有关有限域 Fq(q为一个素数幂 )上的以 l为周期的 n次不可约多项式的个数的结论 ,另外 ,本文结合初等数论知识得到了前面这个结论的几个推论 ,并对利用低次不可约多项式构造高次不可约多项式进行了研究 。
4) monic irreducible polynomial
首一的k次不可约多项式
5) Finite codimensional ideal
齐次多项项式芽
6) Homogeneous and symmetric polynomial
齐次对称多项式
1.
By means of majorized inequalities and mathematical induction, the well known Chebyshev s inequality is generalized to homogeneous and symmetric polynomials of degree m (e.
本文借助于控制不等式及数学归纳法 ,将著名的切比雪夫不等式推广到m次一般齐次对称多项式上 (如文中定理及引理 7) ,并将此结果用于对称平均等 。
补充资料:齐次多项式
简称“齐次式”。合并同类项后,各项次数都相同的多项式。如x-2y+3z是一次齐次式;3x2+y2-8z2+xy-2yz是二次齐次式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条