说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不可约齐次多项式
1)  irreducible homogeneous polynomial
不可约齐次多项式
2)  Irreducible polynomial
不可约多项式
1.
For a wide range of integers n (n is the product of prime number and prime number or 1),a necessary and sufficient condition is given for a polynomial of degree n over the finite field F_p being an irreducible polynomial or primitive polynomial.
对于一大类整数n(n为素数乘于素数或1的积),分别给出有限域Fp上n次多项式是不可约多项式与本原多项式的一个充要条件,该条件可通过O(n3)次Fp上乘法加以验证,易于硬件实现。
2.
In this paper, we discuss the number of irreducible polynomials over F q of degree m and period l, moreover, we describle a principle of obtaining new irreducible polynomials from known ones.
主要利用较文献 [4]更为简明的方法证明了有关有限域 Fq(q为一个素数幂 )上的以 l为周期的 n次不可约多项式的个数的结论 ,另外 ,本文结合初等数论知识得到了前面这个结论的几个推论 ,并对利用低次不可约多项式构造高次不可约多项式进行了研究 。
3)  Homogeneous polynomial
齐次多项式
4)  monic irreducible polynomial
首一的k次不可约多项式
5)  Finite codimensional ideal
齐次多项项式芽
6)  Homogeneous and symmetric polynomial
齐次对称多项式
1.
By means of majorized inequalities and mathematical induction, the well known Chebyshev s inequality is generalized to homogeneous and symmetric polynomials of degree m (e.
本文借助于控制不等式及数学归纳法 ,将著名的切比雪夫不等式推广到m次一般齐次对称多项式上 (如文中定理及引理 7) ,并将此结果用于对称平均等 。
补充资料:齐次多项式
简称“齐次式”。合并同类项后,各项次数都相同的多项式。如x-2y+3z是一次齐次式;3x2+y2-8z2+xy-2yz是二次齐次式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条