1) Inhomogeneous Dual-variable Quadratic Polynomials
二元二次非齐次多项式
1.
Analysis on The Condition of Factorization of Inhomogeneous Dual-variable Quadratic Polynomials;
二元二次非齐次多项式因式分解的条件分析
2) quadratic heterogeneous polynomial with n varibles
n元二次非齐次多项式
1.
In this article matrix is employed in presenting a way that a quadratic heterogeneous polynomial with n varibles can be divided into the products of two linear factors, and thus the problem of factorization of this sort can be settled.
用矩阵方法给出了一个判别实n元二次非齐次多项式可分解为二个一次因式的乘积的方法,解决了这类多项式的因式分解问
3) binary quadratic polynomial
二元二次多项式
1.
In this paper we give a simple method for factorization in real number field to binary quadratic polynomial F(x,y)=ax 2+bxy+cy 2+dx+ey+f and, by using the method, quadratic polynomials in several elements can be decomposed simply.
给出二元二次多项式 F(x,y) =ax2 +bxy +cy2 +dx +ey +f在实数范围内因式分解的一种简便方法 。
4) quadratic polynomials in several elements
多元二次多项式
5) n variables power two polynomial
n元二次多项式
1.
Using the elementary means,a necessary and sufficient condition,differentiating whether n variables power two polynomial can be factorized,was put forward.
用初等方法给出了一个判别n元二次多项式可因式分解的充要条件,并给出了分解的具体方法。
6) bivariate polynomial of order one
二元一次多项式
补充资料:二次质因子
在实数范围内不能分解成一次因式乘积的形式的二次因式,即形如:
x^2+px+q
其中,p×p-4q<0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条