2) Inhomogeneous Dual-variable Quadratic Polynomials
二元二次非齐次多项式
1.
Analysis on The Condition of Factorization of Inhomogeneous Dual-variable Quadratic Polynomials;
二元二次非齐次多项式因式分解的条件分析
3) quadratic heterogeneous polynomial with n varibles
n元二次非齐次多项式
1.
In this article matrix is employed in presenting a way that a quadratic heterogeneous polynomial with n varibles can be divided into the products of two linear factors, and thus the problem of factorization of this sort can be settled.
用矩阵方法给出了一个判别实n元二次非齐次多项式可分解为二个一次因式的乘积的方法,解决了这类多项式的因式分解问
5) Finite codimensional ideal
齐次多项项式芽
6) Homogeneous and symmetric polynomial
齐次对称多项式
1.
By means of majorized inequalities and mathematical induction, the well known Chebyshev s inequality is generalized to homogeneous and symmetric polynomials of degree m (e.
本文借助于控制不等式及数学归纳法 ,将著名的切比雪夫不等式推广到m次一般齐次对称多项式上 (如文中定理及引理 7) ,并将此结果用于对称平均等 。
补充资料:二次质因子
在实数范围内不能分解成一次因式乘积的形式的二次因式,即形如:
x^2+px+q
其中,p×p-4q<0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条