1) Lebesgue Stieltjes measure
Lebesgue-Stieltjes测度
2) Borel-Stieltjes measure
Borel-Stieltjes测度
1.
The measure on the measurable space (Rn,(?)n) is as characterized a Borel-Stieltjes measure.
给出可测空间(R~n,~n)上的测度为Borel-Stieltjes测度的特征;利用分布函数的术语完全刻画了R~n上的Borel-Stieltjes测度成为乘积测度的条件。
5) Lebesgue measure
Lebesgue测度
1.
And quiet a lot of these points exist from the perspective of the Lebesgue measure.
并且从Lebesgue测度的角度看,这样的点还相当多。
2.
Proved that this kind of open domain does not carry a nontrivial doubling measure, Also constructed a bounded closed Jordan domainΩon R~2,on which the limit of Lebesgue measure is not a doubling measure.
通过直线上的一类胖Cantor集构造了[0,1]~2上的一类开域,使得在这类开域上不存在加倍测度,并且构造一个R~2上的有界若当闭域Ω,使得Lebesgue测度L在其上的限制不是加倍测度。
3.
This article is dealing with the problem of the subject context analyzing for Real Variable Function Theory,including Lebesgue measure,integral theory, the developing clue of the problem, the main idea, the main methods of skill, the whole construction, etc .
包括:Lebesgue测度与积分理论产生以及展开的问题线索、主要想法、主要技术处理手段、整体结构等问题。
6) Lebesgue Outer Measure
Lebesgue外测度
1.
The Finite Additivity of the Lebesgue Outer Measure;
Lebesgue外测度的有限可加性
补充资料:Lebesgue-Stieltjes积分
Lebesgue-Stieltjes积分
Lebesgue-Stidtjes integral
1划比s粤犯一Sdd扣积分【h加s邵犯~S创娜如魄阳l;Jle6-era一Clll~ca“。Te印“l I月犯s脾积分(玩bes胖加比g几。)的一种推广.对于非负测度料“玫besgue一Stieltjes积分”一词用于当X一R”,;为非玫城胖测度的情形;于是积分lxfd;像一般情形下玫besg优积分一样定义,若拜是变号的,则拜=拜:一拼2,这里拼:,拼2均为非负测度,而玫besgue一Stieltjes积分定义为 夕““一夕“。l一夕‘,2,只要右边两个积分存在.对X二R’情形,召的可数可加性与有界性条件等价于拼由某个有界变差函数中生成.此时玩比591姆一Stie均es积分可写为 b 丁,“,的形式.关于离散测度的玫besg姆.Stiel幼es积分实际上是一数项级数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条