1) g-Monotone mapping
g-次微分
2) G-graded ring
G-分次环
1.
For any transitive G-set A,this paper discusses the Smash Product of a G-graded ring and A,defines and studies the Smash Products of G-graded rings and G-sets,then generalize the results of graded-traces and graded-rejects of Smash Products.
对任意可迁 G-集 A,讨论了 G-分次环与 A的 Smash Products,定义并研究了 G-分次环与 G-集的Smash Products,推广了关于分次迹 ,余迹的 Smash Products的结
2.
Based on the theory of G-graded rings discussed in the Papers[1-3],suppose R be a strong G-graded ring,for arbitrary group,provided the property of strong G-graded ring,we discuss the equivalence between G/H, R-graded module category and R~((H)) module category.
在文献[1-3]的基础上,利用强G-分次环的性质,讨论了G/H-分次模范畴(G/H,R)-gr与模范畴R~((H))-Mod之间的等价问题。
3) G-graded module
G-分次模
4) G-differential
G-微分
5) G-graded category
G-分次范畴
1.
Let G be a group and X be a G-graded category over k.
设G为群,X为k上G-分次范畴。
6) G-graded Γ-ring
G分次Γ环
补充资料:次微分
次微分
subdifferential
次微分阵由山场,图血l;cy6及一帅epe。”“幼] 定义在与空间Y对偶的空间X上的凸函数f:X卜R在点x。的次微分是Y中由下式定义的点集: 刁f(x‘、)={夕EY二f(x)一f(x。)) )
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条