1) γ-subdifferential
γ-次微分
1.
A kind of set-valued differential(γ-subdifferential) of functionals in normed linear space was defined,and its properties and application to nonsmooth multiobjective programming problem was discussed,so that some new results were obtained.
定义了赋范线性空间上泛函的一种新型集值导数(γ-次微分),讨论了它的一些性质及其在非光滑数学规划问题上的一些应用,得到了一些新的结果,这些结果改进和推广了已有的相关结论,对于进一步研究此问题提供了可靠的理论依据。
2.
By means of γ-subdifferential and γ-convexity some results on maximum entropy method for γ-convex programming are introduced.
利用γ-次微分和γ-凸性的概念,给出了一类γ-凸规划极大熵方法的几个结果:(1)如果x是γ-凸规划的严格局部最优解,那么x也是它的唯一最优解;(2)设xp是问题:minf(x),x∈Ωp{x|gp(x)≤0}的严格局部有限最优解,x是问题minf(x),x∈Ω={x|gi(x)≤0,i=1,…,m}的严格局部有限最优解,如果x∈bdΩ,那么gp(xp)=0;(3)设x∈bdΩ,如果xp和x同(2),那么xp→x,p→∞。
2) γ-subdifferentiation
γ次微分
1.
The optimality conditions of the constraint nonsmooth programming problem are discussed on R, under γ-vexity assumptions, by using γ-subdifferentiation.
借助于γ次微分,在γ凸条件下,在一维空间R上讨论了约束非光滑优化问题的最优性条件。
3) graded Γ-ring
分次Γ-环
1.
This paper introduce the Concept of graded Γ-rings and graded F-modules over gaded Γ-rings, set up the basic theory of graded Γ-rings.
本文引进分次Γ-环及其分次Γ-环上的分次Γ-模的概念,建立了分次Γ-环的基础理论,刻划了Γ-环与其左、右算子环之间的联系,探讨了几个范畴之间的关系,从而证明了分次Γ-模范畴是Grothendieck范畴。
4) graded Γ-module
分次Γ-模
5) G graded Γ ring
(强)分次Γ-环
6) G-graded Γ-ring
G分次Γ环
补充资料:次微分
次微分
subdifferential
次微分阵由山场,图血l;cy6及一帅epe。”“幼] 定义在与空间Y对偶的空间X上的凸函数f:X卜R在点x。的次微分是Y中由下式定义的点集: 刁f(x‘、)={夕EY二f(x)一f(x。)) )
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条