1) A-harmonic equati
A类调和方程
2) the first biharmonic problem
第一类重调和方程
1.
This paper proposes a posteriori error estimation of gradient recovery-type for the Ciarlet-Raviart formulation of the first biharmonic problem.
文章给出了第一类重调和方程Ciarlet-Raviart混合变分形式下的梯度恢复型后验误差估计;通过引入加权Cle′ment插值,改进了ZZ梯度恢复法,给出并从理论上证明了后验误差估计的上、下界。
3) A-harmonic equation
A-调和方程
1.
Regularity for very weak solutions to A-harmonic equation
一类非齐次A-调和方程很弱解的正则性
2.
A local Aλ3r(λ1,λ2,Ω)-weight Caccioppoli-type Inequality for weak solutions to A-harmonic equation has been established.
研究形如div A(x,u(x))=0的A-调和方程,证明其弱解满足局部Arλ3(λ1,λ2,Ω)-权Caccioppoli型不等式,这可看作A-调和方程相应结果的推广。
3.
Alocal regularity of solution to Kψ,θ-obstacle problemfor the non-homogenousA-harmonic equation divA(x;ru(x)) =divF(x)is given,where A:A: Ω×Rn→Rn is a Carathéodory function satisfying some coercivity,and growth conditions with the natural exponent 1 <p<n,the obstacle problem ψ≥0 andthe boundary data θ∈W1,p(Ω).
给出了非齐次A-调和方程障碍问题的解在当障碍函数ψ0,边值θ∈W1,p(n),自然指数1
4) harmonic equations
调和方程
1.
An efficient collocation method for solving boundary value problems of harmonic equations;
调和方程边值问题的高效配置算法
2.
In this paper, the compactness of integral operators on L2(Ω) are proved, with the kernels 1r and ln1r that are fundamental solutions of harmonic equations
本文给出了以调和方程基本解1r和ln1r为核的积分算子在L2(Ω)上的紧性证
5) harmonic equation
调和方程
1.
Variation solution of harmonic equation problem with over-determined Dirichlet boundary value;
调和方程超定Dirichlet边值问题的变分解
2.
Series solution for boundary value problem of nonhomogeneous harmonic equation with variable coefficient;
一类变系数非齐次调和方程边值问题的级数解
3.
The author used self-adjoint secondorder elliptic partial differential equation replacement harmonic equation.
本文用一般自伴椭圆二阶偏微分方程代替调和方程,给出Dirichlet法则的推广。
6) biharmonic equations
双调和方程
1.
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解答。
2.
It is not only introduced the two measures taken to solve the biharmonic equations, but the topical grids of H-type、C-type 、 and O-type are generated with this equation.
文中不仅对数值求解双调和方程的两种不同方法作了介绍,还利用该方程生成了典型的H型、C型、O型网格。
3.
The grid generation technique for body_fitted coordinate system by means of numerical solution of biharmonic equations is studied, then the topical H_type grid and the flow field is generated and simulated numerically, respectively.
本文对利用双调和方程微分法生成贴体坐标网格的技术进行了探讨和尝试 ,生成了典型的H型网格 ,并对流场进行了数值模拟。
补充资料:第二类拉格朗日方程
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条