3) Non homogeneous A harmonic systems
非齐次A-调和方程组
4) A-harmonic equation
A-调和方程
1.
Regularity for very weak solutions to A-harmonic equation
一类非齐次A-调和方程很弱解的正则性
2.
A local Aλ3r(λ1,λ2,Ω)-weight Caccioppoli-type Inequality for weak solutions to A-harmonic equation has been established.
研究形如div A(x,u(x))=0的A-调和方程,证明其弱解满足局部Arλ3(λ1,λ2,Ω)-权Caccioppoli型不等式,这可看作A-调和方程相应结果的推广。
3.
Alocal regularity of solution to Kψ,θ-obstacle problemfor the non-homogenousA-harmonic equation divA(x;ru(x)) =divF(x)is given,where A:A: Ω×Rn→Rn is a Carathéodory function satisfying some coercivity,and growth conditions with the natural exponent 1 <p<n,the obstacle problem ψ≥0 andthe boundary data θ∈W1,p(Ω).
给出了非齐次A-调和方程障碍问题的解在当障碍函数ψ0,边值θ∈W1,p(n),自然指数1
5) harmonic equations
调和方程
1.
An efficient collocation method for solving boundary value problems of harmonic equations;
调和方程边值问题的高效配置算法
2.
In this paper, the compactness of integral operators on L2(Ω) are proved, with the kernels 1r and ln1r that are fundamental solutions of harmonic equations
本文给出了以调和方程基本解1r和ln1r为核的积分算子在L2(Ω)上的紧性证
6) harmonic equation
调和方程
1.
Variation solution of harmonic equation problem with over-determined Dirichlet boundary value;
调和方程超定Dirichlet边值问题的变分解
2.
Series solution for boundary value problem of nonhomogeneous harmonic equation with variable coefficient;
一类变系数非齐次调和方程边值问题的级数解
3.
The author used self-adjoint secondorder elliptic partial differential equation replacement harmonic equation.
本文用一般自伴椭圆二阶偏微分方程代替调和方程,给出Dirichlet法则的推广。
补充资料:二次方程
二次方程
quadratic equation
二次方程[甲.如康明岭‘佣;。明paT的e yPaaHe朋el 二次的代数方程(目罗braic eqw币on).二次方程的一般形式是 axZ+bx+e二o,a笋0.在复数域中二次方程有两个解,可通过方程的系数用根式来表示:一b土划厉苍二百丽; 义.,二—l*I 2“当b’>4ac时,两个解是不同的实数;当bZ<4ac时,两个解是(共扼的)复数;当bZ二4“c时,这个方程具有重根x,”::=一b/(Za). 对于简化二次方程(reduced quadlatic eqllatlon) xZ+尸x+任=0,公式(*)具有形式 ·l,2一晋土丫于一、·二次方程的根与系数具有下列关系(见Vi毛te定理(Vi己te tlleor创刀)): bC X,十X=一吮户.X.X。=— 乙一“ 0 .A.HBa圣IoBa撰【补注]表达式bZ一4ac称为二次方程的判别式(discriminant).根据上述事实不难证明:b’一4“c二(二一xZ)’;当且仅当bZ一4“c时,二次方程具有重根.亦见判别式(discrirnlnant).当系数属于特征不为2的域时,公式(*)也成立. 把方程的左边写成a(x+b/Za)“十(c一b“Z4a)(配方(sPlitting of the square”,便可得到公式(勺{
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条