1) Quasilinear elliptic obstacle problem
二阶拟线性椭圆障碍问题
2) the second order nonlinear elliptical problems
二阶非线性椭圆问题
3) quasilinear elliptic problem
拟线性椭圆问题
1.
This paper focused on the study of the quasilinear elliptic problem with critical Hardy-Sobolev exponents and Hardy terms.
研究了一类带有Hardy-Sobolev临界指标和Hardy项的拟线性椭圆问题,通过运用变分方法和分析技巧,证明了该问题正解的存在性。
4) second-order elliptic problem
二阶椭圆问题
1.
A new nonconforming mixed finite element model for the second-order elliptic problem is discussed.
讨论了二阶椭圆问题的一个新的非协调混合元模型,在不需要验证BB条件的情况下,给出了其收敛性分析,得到了与协调元情形相同的最优误差估计。
2.
In this paper, the following second-order elliptic problemis simulated by a new method, which is a combination of least-squares and expanded mixed finite element, least-squares expanded mixed finite element method.
本文首先对二阶椭圆问题提出了一种新的数值模拟方法--最小二乘扩展混合有限元方法。
6) quasilinear elliptic equations of second order
二阶拟线性椭圆型方程
1.
Zhang Zhijun discussed the occurrence of the solutions in a bounded smooth domain of R~N,and gave the minimum explosive velocity of its solutions,The paper discusses further the occurrence of the explosive solutrons for a class of quasilinear elliptic equations of second order with gradient term.
现进一步讨论二阶拟线性椭圆型方程在含梯度项情况下爆炸解的存在性。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条